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Motivation: p = 2, n even

Let
f : F n

2 = F2n → F2

be bent!

I Highly nonlinear: Cryptography.
I Interesting constructions (spreads).
I Finite Fields.
I Covering radius of 1st-order Reed-Muller codes.
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Motivation: p odd, vectorial version

Let
f : F n

p = Fpn → Fpn

be planar!

I Semifields.
I MUBs.
I Finite Fields.
I MRD codes, Gabidulin codes.
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Beautiful objects have symmetries ...

I Are all objects beautiful?
I Planes of prime order

I Are most objects beautiful?
I Semifields in odd characteristic.
I APN functions.

I We are sure that most objects are ugly, but we do not know
them, yet.

I Semifields in even characteristic (KANTOR 2006)
I bent functions: we do not know.
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Oscar S. Rothaus 1976
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John F. Dillon 1974
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Outline

I Survey some constructions.
I Walsh transform.
I normality.
I regularity.
I extendability.
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Definition of bent

A function f : F n
2 → F2 is called bent if

f (x + a)− f (x) = b

has 2n−1 solutions for all a 6= 0 and any b.

Example
f (x1, x2, x3, x4) = x1x2 + x3x4: Compute

f


x1 + a1
x2 + a2
x3 + a3
x4 + a4

− f


x1
x2
x3
x4

 = x1a2 +x2a1 +x3a4 +x4a3 +a1a2 +a3a4

is linear.
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Trivial necessary condition/Trivial construction

If f : F n
2 → F2 is bent, then n has to be even:

H = ((−1)f (x−y))x ,y∈Fn
2

which satisfies
H2 = 2n · I.

Theorem (quadratic bent)
If A + AT is regular, then

x 7→ xT · A · x

is bent.
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Extension I

p odd: A function f : F n
p → Fp is called bent if

f (x + a)− f (x) = b

has pn−1 solutions for a 6= 0 and any b.

Example

I As before.
I Trace(x2) on Fpn for any n, also n odd:

Trace((x + a)2 − x2) = Trace(2xa + a2)
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Extension II: Vectorial bent

Consider Trace(x2) without Trace:

Example
F (x) = x2 on Fpn with p odd satisfies

F (x + a)− F (x) = b

has exactly one solution for all a 6= 0 and all b.
Using “projections” ϕ : F n

p → F m
p , we find functions

f = ϕ ◦ F : F n
p → F m

p such that

f (x + a)− f (x) = b

has pn−m solutions for all a 6= 0 and all b
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Extension II: Vectorial bent

A function f : F n
p → F m

p is vectorial bent if

f (x + a)− f (x) = b

has pn−m solutions for all a 6= 0 and all b.

m = n planar: projective planes, connection with semifields.
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Extension III

Do we have vectorial bent functions f : F n
2 → F m

2 ?

Example (n = 2m)

f : F2m × F2m → F2m

(x , y) 7→ x · y

Theorem (NYBERG 1993; SCHMIDT 1995)
If f : F n

2 → F m
2 is vectorial bent, then n is even and m ≤ n/2.
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Conclusion

The necessary conditions for the existence of vectorial bent
functions f : F n

p → F m
p are also sufficient:

I p = 2: n even and m ≤ n/2
I p odd: m ≤ n.

What else can we do?
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Generalizing the differential properties

I Other groups: JEDWAB, DAVIS, SCHMIDT, LEUNG, MA, P.
’90.

I p = 2 and n = m: Modified planar functions (ZHOU 2013,
HORADAM 2007).

I Z4 bent (many authors ’90).
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The Walsh transform: the Boolean case

Given a function f : Fn
p → Fp, then F : Fn

p → C such that

F(a) =
∑
x∈Fn

p

ζ
f (x)+〈a,x〉
p

is the Walsh transform of f (where ζp complex p-th root of unity).

Theorem
f is bent if and only if

|F(a)| = pn/2.

for all a.
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The Walsh transform: the vectorial case
Given a function f : F n

p → F m
p , then F : Fn+m

p → C such that

F(a,b) =
∑
x∈Fn

p

ζ
〈b,f (x)〉+〈a,x〉
p

is the Walsh transform of f .

Theorem
f is vectorial bent if and only if

|F(a,b)| = pn/2.

for all a,b, b 6= 0
If p = 2:

2n−1 − 1
2

max |F(a,b)|

is called the non-linearity of f .
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Generalizing the non-linearity properties

Goal: minimize max |F(a,b)|, achieved for vectorial bent
functions.

Generalizations are only of interest if p = 2.

I n odd, m = 1: Covering radius problem for Reed-Muller
code PATTERSON, WIEDEMANN 1983; MYKKELTVEIT

(n = 7) 1980; KAVUT, YÜCEL (n = 9) 2010.
I n = m odd: almost bent functions.
I n odd m < n?
I n even and m > n/2?
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It seems that we miss something ...

There are MANY bent functions, but only very few of them can
be described by a theorem! Not much is known about
equivalence classes:

n No. of bent functions

n = 4 896
n = 6 5,425,430,528
n = 8 99,270,589,265,934,370,305,785,861,242,880

LANGEVIN, LEANDER 2009 (n = 8), PRENEEL 1993 (n = 6)
Only a few of the n = 8 examples are explained by a theorem.
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Equivalence

f ,g : F n
p → F m

p are equivalent if the graphs

Gf := {(x , f (x)) : x ∈ F n
p } ⊆ F n+m

p

and
Gg := {(x ,g(x)) : x ∈ F n

p } ⊆ F n+m
p

are in the same orbit of AGL(n + m,p).

One may also use isomorphism of corresponding designs.
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The Maiorana-McFarland construction

F : F 2
pm → Fpm such that

F
(

x
y

)
= x · π(y) + ρ(y)

is bent if π is a permutation and ρ : Fpm → Fpm arbitrary:

(x + a) · π(y + b) + ρ(y + b)− x · π(y)− ρ(y)

= x(π(y + b)− π(y))+

terms depending on y .
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The spread construction

Decompose V = F 2m
p into pm + 1 subspaces which meet

pairwise in {0}, call them U∞ and Uv , v ∈ Fpm (spread).

Let π be a permutation on Fm
p . Then F : F 2m

p → F m
p such that

F (x) =

{
v0 if x ∈ U∞
π(v) if x ∈ Uv \ {0}

is vectorial bent.

For bent functions F 2m
p → F 2

p , partial spreads are sufficient!
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Niho construction

Consider
Uv := {(x , v · x) : x ∈ F2m}

and
U∞ := {(0, x) : x ∈ F2m}

Let π : F2m → F2m be a permutation such that π(x) + a · x is
2− 1 mapping for all a 6= 0. Then

F (x) =

{
0 if x ∈ U∞

π(v) · x if x ∈ Uv \ {0}.

is bent.
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Connection to geometry

π : F2m → F2m is a permutation such that π(x) + a · x is 2− 1
mapping for all a 6= 0 means π is an o-polynomial (hyperoval!)

DILLON 1974; CARLET, MESNAGER; BUDAGHYAN,
HELLESETH, KHOLOSHA ’10
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Çeşmelioğlu, Meidl, P. 2015

Theorem
A ”mix” of linear and constant functions on the spread is
impossible.

Theorem
Only works for p = 2.

Theorem
There are also other spreads that can be used, but the
corresponding (known) bent functions are Maiorana-McFarland.

Question
Is it possible to use other functions on the spread? Cyclotomy?

No. 25



Normal bent functions

All the constructions above (p = 2) are normal: There is a
subspace of dimension n/2 on which f is affine.

Theorem (CANTEAUT, DAUM, DOBBERTIN, LEANDER
2006)
Trace(a · x57) is non-normal bent on F214 when a ∈ F4 \ F2 (plus
recursion).

Question
Are most bent functions non-normal, and we know only the nice
examples?

Theorem (Çeşmelioğlu, Meidl, P. 2014)
If p is odd and n even, one class of quadratic bent functions on
Fpn are not normal (elliptic quadrics).

No. 26



(weak) regularity (only for p odd interesting)

All the constructions of bent functions f presented so far are
regular:

F(v) ∈ {Γ · ζ i
p}

where Γ is independent from v .
Γ 6= pn/2: weakly regular.

Question
Are most bent functions not (weakly) regular?
Some sporadic examples are known (TAN, YANG, ZHANG

2010, HELLESETH, KHOLOSHA 2010) as well as only one
generic construction method (ÇEŞMELIOĞLU, MCGUIRE,
MEIDL 2012) and a recursive construction.

Theorem (Çeşmelioğlu, Meidl, P. 2013)
If n is even and f weakly regular, then f is not normal.
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Extendability

A bent function f : F n
p → Fp is extendable if there is a vectorial

bent F : F n
p → F 2

p such that

F (x) =

(
f (x)
g(x)

)
If p = 2, all constructions (perhaps with the exception of partial
spreads) are extendable. If p is odd and n = 2, there are
non-extendable bent functions.

Question
Are most bent functions not extendable?
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Some computational results: q = 3, n = 4
Özbudak computed quadratic bent functions f : F 4

3 → F m
3 .

quadratic: f (x + a)− f (x)− f (a) + f (0) is linear!

inequivalent quadratic bent
m = 1 2
m = 2 7
m = 3 14
m = 4 2

I All quadratic bent functions with m = 2 are extendable.
I Only 5 with m = 3 are extendable.
I Only one of the m = 3 examples can be extended to both

m = 4 examples.
I Four of the m = 3 examples extend to the

non-Desarguesian commutative semifield (x4 + x10 − x36).
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Extendability of quadratic bent functions

If p = 2, quadratic bent functions are

x 7→ xT · A · x

where A + AT is invertible, without loss of generality

A =


U 0 . . . 0
0 U . . . 0
...

. . .
...

0 . . . . . . U


where U =

(
0 1
0 0

)
The number of quadratic bent functions and the number of
inequivalent functions is known.
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The 2-dimensional case

I How many (say N) quadratic bent functions f : F n
2 → F 2

2
without linear terms?

I How many inequivalent ones?

Theorem (P., SCHMIDT, ZHOU 2014/15)
Let n = 2m be even and let X be the set of n × n alternating
matrices over F2. Then

N =
v

2m

m∑
i=0

(−1)i 2i(i−1)
[
m
i

] m−i∏
k=1

(22k−1 − 1)2,

where

v = 2m(m−1)
m∏

k=1

(22k−1 − 1)

is the number of nonsingular matrices in X.
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Classification results for quadratic bent functions

f : F n
p → F m

p , p prime

I p = 2,m = 1: Only one example.
I p odd, n even, m = 1: Two examples
I p odd, n odd, m = 1: One example
I p odd, n = m = 2: One example
I p odd, n = 3,m = 3: Two examples (MENICHETTI 1977)
I p odd, n = 3,m = 2: One example (ÖZBUDAK, P. 2014)
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Conclusion

I Survey of known constructions of (vectorial) bent functions.
I Apparently, we know only a few bent functions.
I Most bent functions are perhaps non-normal (p = 2), but

all constructions are normal, similarly non-regular-
I Most bent functions are perhaps not extendable, but

almost all constructions are extendable.
I Number of quadratic vectorial bent functions?
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