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Plan

The use of symmetry

I Beautiful objects have symmetries.
I Symmetries help to reduce the search space for nice objects
I and hence make huge problems acessible to computations.

The use of challenge problems

I Applications for classical theories and theorems such as
I Burnside orbit counting
I Invariant theory of finite groups
I Theory of quadratic forms
I Representation theory of finite groups
I Provide a practical introduction to abstract theory.



Self-dual codes

Definition

I A linear binary code C of length n is a subspace C ≤ Fn2 .
I The dual code of C is

C⊥ := {x ∈ Fn2 | (x, c) :=
∑n
i=1 xici = 0 for all c ∈ C}

I C is called self-dual if C = C⊥.
I Aut(C) = {σ ∈ Sn | σ(C) = C}.

Facts

I dim(C) + dim(C⊥) = n so C = C⊥ ⇒ dim(C) = n
2 .

I Let 1 = (1, . . . , 1). Then (c, c) = (c,1).
I So if C = C⊥ then 1 ∈ C.



Doubly-even self-dual codes

The Hamming weight.

I The Hamming weight of a codeword c ∈ C is
wt(c) := |{i | ci 6= 0}|.

I wt(c) ≡2 (c, c), so C ⊆ C⊥ implies wt(C) ⊂ 2Z.
I C is called doubly-even if wt(C) ⊂ 4Z.
I Fact: C = C⊥ ≤ Fn2 doubly-even⇒ n ∈ 8Z.
I The minimum distance d(C) := min{wt(c) | 0 6= c ∈ C}.
I A self-dual code C ≤ Fn2 is called extremal if d(C) = 4 + 4b n24c.
I The weight enumerator of C is

pC :=
∑
c∈C x

n−wt(c)ywt(c) ∈ C[x, y]n.



Examples for self-dual doubly-even codes
Hamming Code

h8 :


1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


the extended Hamming code, the unique doubly-even self-dual code
of length 8,

ph8
(x, y) = x8 + 14x4y4 + y8

and Aut(h8) = 23 : L3(2).

Golay Code

The binary Golay code G24 is the unique doubly-even self-dual code
of length 24 with minimum distance ≥ 8. Aut(G24) =M24

pG24 = x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24



Application of invariant theory

The weight enumerator of C is pC :=
∑
c∈C x

n−wt(c)ywt(c) ∈ C[x, y]n.

Theorem (Gleason, ICM 1970)

Let C = C⊥ ≤ Fn2 be doubly even. Then d(C) ≤ 4 + 4b n24c
Doubly-even self-dual codes achieving equality are called extremal.

Proof:
I pC(x, y) = pC(x, iy), pC(x, y) = pC⊥(x, y) = pC(

x+y√
2
, x−y√

2
)

I G192 := 〈
(

1 0
0 i

)
, 1√

2

(
1 1
1 −1

)
〉.

I pC ∈ Inv(G192) = C[ph8
, pG24

]
I ∃!f ∈ C[ph8

, pG24
]8m such that

f(1, y) = 1 + 0y4 + . . .+ 0y4b
m
3 c + amy

4bm3 c+4 + bmy
4bm3 c+8 + . . .

I am > 0 for all m

Proposition

bm < 0 for all m ≥ 494 so there is no extremal code of length ≥ 3952.
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Automorphism groups of extremal codes

length 8 24 32 40 48 72 80 96 104 ≥ 3952
d(C) 4 8 8 8 12 16 16 20 20
extremal h8 G24 5 16, 470 QR48 ? ≥ 15 ? ≥ 1 0

Aut(C) = {σ ∈ Sn | σ(C) = C} is the automorphism group of C ≤ Fn2 .

I Aut(h8) = 23.L3(2)

I Aut(G24) =M24

I Length 32: L2(31), 25.L5(2), 28.S8, 28.L2(7).2, 25.S6.
I Length 40: 10,400 extremal codes with Aut = 1.
I Aut(QR48) = L2(47).
I Sloane (1973): Is there a (72, 36, 16) self-dual code?
I If C is such a (72, 36, 16) code then Aut(C) has order ≤ 5.

I There is no beautiful (72, 36, 16) self-dual code.
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The Type of an automorphism

Definition
Let σ ∈ Sn of prime order p. Then σ is of Type (z, f), if σ has z
p-cycles and f fixed points. zp+ f = n.

I Let p be odd, σ = (1, 2, .., p)(p+ 1, .., 2p)...((z − 1)p+ 1, .., zp).

I Fn2 = Fix(σ) ⊥ E(σ) ∼= Fz+f2 ⊥ Fz(p−1)2 with

Fix(σ) = 〈

1 . . . 1 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0
0 . . . 0 1 . . . 1 . . . 0 . . . 0 0 0 . . . 0
0 . . . 0 0 . . . 0 . . . 1 . . . 1 0 0 . . . 0
0 . . . 0 0 . . . 0 . . . 0 . . . 0 1 0 . . . 0
0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 1 . . . 0
0 . . . 0︸ ︷︷ ︸
p

0 . . . 0︸ ︷︷ ︸
p

. . . 0 . . . 0︸ ︷︷ ︸
p

0 0 . . . 1

〉

E(σ) = Fix(σ)⊥ =
{(x1, . . . , xp, xp+1, . . . , x2p, . . . , x(z−1)p+1, . . . , xzp, 0, . . . , 0) |
x1 + . . .+ xp = xp+1 + . . .+ x2p = . . . = x(z−1)p+1 + . . .+ xzp = 0}



Two self-dual codes of smaller length
I Let C ≤ Fn2 and p an odd prime,
I σ = (1, 2, .., p)(p+ 1, .., 2p)...((z − 1)p+ 1, .., zp) ∈ Aut(C).
I Then C = C ∩ Fix(σ)⊕ C ∩ E(σ) =: FixC(σ)⊕ EC(σ).

FixC(σ) = {(cp . . . cp︸ ︷︷ ︸
p

c2p . . . c2p︸ ︷︷ ︸
p

. . . czp . . . czp︸ ︷︷ ︸
p

czp+1 . . . cn) ∈ C} ∼=

π(FixC(σ)) = {(cpc2p . . . czpczp+1 . . . cn) ∈ Fz+f2 | c ∈ FixC(σ)}

I and C⊥ = C⊥ ∩ Fix(σ)⊕ C⊥ ∩ E(σ).
I C = C⊥ then FixC(σ) is self-dual in Fix(σ) and EC(σ) is

(Hermitian) self-dual in E(σ).

Fact
π(FixC(σ)) is a self-dual code of length z + f , in particular

dim(FixC(σ)) =
z + f

2
and |FixC(σ)| = 2(z+f)/2.



Application of Burnside’s orbit counting theorem

Theorem (Conway, Pless, 1982)

Let C = C⊥ ≤ Fn2 , σ ∈ Aut(C) of odd prime order p and Type (z, f).

Then 2(z+f)/2 ≡ 2n/2 (mod p).

Proof: Apply orbit counting:
The number of G-orbits on a finite set M is 1

|G|
∑
g∈G |FixM (g)|.

Here G = 〈σ〉, M = C, FixC(g) = FixC(σ) for all 1 6= g ∈ G, and the
number of 〈σ〉-orbits on C is 1

p (2
n/2 + (p− 1)2(z+f)/2) ∈ N.

Corollary

C = C⊥ ≤ Fn2 , p > n/2 an odd prime divisor of |Aut(C)|, then p ≡ ±1
(mod 8).

Here z = 1, f = n− p, (z + f)/2 = (n− (p− 1))/2, so 2(p−1)/2 is 1
mod p and hence 2 must be a square modulo p.



Application of quadratic forms

Remark

I C = C⊥ ⇒ 1 = (1, . . . , 1) ∈ C, since (c, c) = (c,1).
I If C is self-dual then n = 2dim(C) is even and

1 ∈ C⊥ = C ⊂ 1⊥ = {c ∈ Fn2 | wt(c) even }.

I Self-dual doubly-even codes correspond to totally isotropic
subspaces in the quadratic space

En−2 := (1⊥/〈1〉, q), q(c+ 〈1〉) = 1

2
wt(c) (mod 2) ∈ F2.

I C = C⊥ ≤ Fn2 doubly-even⇒ n ∈ 8Z.

Theorem (A. Meyer, N. 2009)

Let C = C⊥ ≤ Fn2 doubly-even. Then Aut(C) ≤ Altn.



Application of quadratic forms: Some background

I Assume n ∈ 8Z.
I En−2 := (1⊥/〈1〉, q), q(c+ 〈1〉) = 1

2 wt(c) (mod 2) ∈ F2. is an
(n− 2)-dimensional quadratic space over F2.

I There is X ≤ En−2 with X = X⊥ and q(X) = {0}
call such X self-dual isotropic.

I C = C⊥ ≤ Fn2 , doubly-even, then X = C/〈1〉 ≤ En−2 is self-dual
isotropic.

I O(En−2) = {g ∈ GL(En−2) | q(g(x)) = q(x) for all x ∈ En−2} the
orthogonal group of En−2.

Definition
Fix X0 ≤ En−2 self-dual isotropic. D : O(En−2)→ {1,−1},
D(g) := (−1)dim(X0/(X0∩g(X0))) the Dickson invariant.

Fact g ∈ StabO(En−2)(X)⇒ D(g) = 1.



Application of quadratic forms

Aut(C) = {σ ∈ Sn | σ(C) = C} is the automorphism group of C ≤ Fn2 .

Theorem (A. Meyer, N. 2009)

Let C = C⊥ ≤ Fn2 doubly-even. Then Aut(C) ≤ Altn.

I Proof. (sketch)
I En−2 = (1⊥/〈1〉, q), q(c+ 〈1〉) = 1

2 wt(c) (mod 2) ∈ F2.

I C/〈1〉 is a self-dual isotropic subspace En−2.
I The stabilizer in the orthogonal group of En−2 of such a space

has trivial Dickson invariant.
I Sn ≤ O(En−2), Aut(C) = StabSn

(C).
I The restriction of the Dickson invariant to Sn is the sign.



Application of Representation Theory

G finite group, F2G = {
∑
g∈G agg | ag ∈ F2} group ring.

Then G acts on F2G ∼= F|G|2 by permuting the basis elements.

Theorem (Sloane, Thompson, 1988)

There is a G-invariant self-dual doubly-even code C ≤ F2G, if and
only if |G| ∈ 8N and the Sylow 2-subgroups of G are not cyclic.

Theorem (A. Meyer, N., 2009)

Given G ≤ Sn. Then there is C = C⊥ ≤ Fn2 doubly-even such that
G ≤ Aut(C), if and only if
(1) n ∈ 8N,
(2) all self-dual composition factors of the F2G-module Fn2 occur with

even multiplicity, and
(3) G ≤ Altn.



General theoretical results (Summary)

I Invariant Theory:
C = C⊥ ≤ Fn2 extremal if d(C) = 4 + 4b n24c

I Orbit Counting:
C = C⊥, σ ∈ Aut(C) of odd prime order p and Type (z, f), then
2(z+f)/2 ≡ 2n/2 (mod p)

I Quadratic Forms:
C = C⊥ doubly even, then n ∈ 8Z and Aut(C) ≤ Altn.

I Equivariant Witt groups and Representation Theory:
Characterisation of the permutation groups admitting a self-dual
doubly-even invariant code.



C = C⊥ ≤ F72
2 extremal, G = Aut(C).

Theorem (Conway, Huffmann, Pless, Bouyuklieva,
O’Brien, Willems, Feulner, Borello, Yorgov, N., ..)

Let C ≤ F72
2 be an extremal doubly even code,

G := Aut(C) := {σ ∈ S72 | σ(C) = C}, σ ∈ G of prime order p.
I If p = 2 or p = 3 then σ has no fixed points. (B)
I If p = 5 or p = 7 then σ has 2 fixed points. (CHPB)
I G contains no element of prime order ≥ 7. (BYFN)
I G has no subgroup S3, D10, C3 × C3. (BFN)
I If p = 2 then C is a free F2〈σ〉-module. (N)
I G has no subgroup C10, C4 × C2, Q8.
I G 6∼= Alt4, G 6∼= D8, G 6∼= C2 × C2 × C2 (BN)
I G contains no element of order 6. (Borello)
I and hence |G| ≤ 5.
I G contains no element of order 4. (Y)

Existence of an extremal code of length 72 is still open.



The Type of a permutation of prime order
Theoretical results, p odd.

Definition (recall)

Let σ ∈ Sn of prime order p. Then σ is of Type (z, f), if σ has z
p-cycles and f fixed points. zp+ f = n.

Theorem (Conway, Pless) (recall)

Let C = C⊥ ≤ Fn2 , σ ∈ Aut(C) of odd prime order p and Type (z, f).

Then 2(z+f)/2 ≡ 2n/2 (mod p).

Corollary. n = 72⇒ p 6= 37, 43, 53, 59, 61, 67.

Corollary. If n = 8 then p 6= 5 and p = 3⇒ Type (2, 2).

24 6≡ 2(1+3)/2 (mod 5), 24 6≡ 2(1+5)/2 (mod 3).



Computational results, p odd.
BabyTheorem: n = 8, p = 3

All doubly even self-dual codes of length 8 that have an
automorphism of order 3 are equivalent to h8.

I σ = (1, 2, 3)(4, 5, 6)(7)(8) ∈ Aut(C)
I e0 = 1 + σ + σ2, e1 = σ + σ2 idempotents in F2〈σ〉
I C = Ce0 ⊥ Ce1 ≤ F8

2e0 ⊥ F8
2e1
∼= F4

2 ⊥ F2
4

I Ce0 = FixC(σ) isomorphic to a self-dual code in F4
2, so

Ce0 :

[
1 1 1 0 0 0 1 0
0 0 0 1 1 1 0 1

]
I Ce1 = EC(σ) ≤ F2

4 Hermitian self-dual, Ce1 ∼= [1, 1], so

Ce1 :

[
0 1 1 0 1 1 0 0
1 0 1 1 0 1 0 0

]
and hence

C :


1 1 1 0 0 0 1 0
0 0 0 1 1 1 0 1
0 1 1 0 1 1 0 0
1 0 1 1 0 1 0 0





Computational results, p odd.
Theorem. (Borello, Feulner, N. 2012, 2013)

Let C = C⊥ ≤ F72
2 , extremal, so d(C) = 16.

Then Aut(C) has no subgroup C7, C3 × C3, D10, S3.

I Proof. for S3 = 〈σ, τ | σ3, τ2, (στ)2〉
I σ = (1, 2, 3)(4, 5, 6) · · · (67, 68, 69)(70, 71, 72)
I τ = (1, 4)(2, 6)(3, 5) · · · (67, 70)(68, 72)(69, 71)
I C ∼= FixC(σ)⊕ EC(σ) with FixC(σ) ∼= (1, 1, 1)⊗ G24 and
I EC(σ) ≤ F24

4 Hermitian self-dual, minimum distance ≥ 8.
I τ acts on EC(σ) by (ε1, ε2, . . . , ε23, ε24)

τ = (ε2, ε1, . . . , ε24, ε23)

I FixEC(σ)(τ) = {ε := (ε2, ε2 . . . , ε24, ε24) ∈ EC(σ)}
I ∼= π(FixEC(σ)(τ)) = {(ε2, . . . , ε24) | ε ∈ FixEC(σ)(τ)} ≤ F12

4

I is trace Hermitian self-dual additive code, minimum distance ≥ 4.
I There are 195,520 such codes.
I 〈FixEC(σ)(τ)〉F4

= EC(σ).
I No EC(σ) has minimum distance ≥ 8.



C = C⊥ ≤ F72
2 , doubly-even.

Theoretical results, p even.

Theorem. (A. Meyer, N.) (recall)

Let C = C⊥ ≤ Fn2 doubly-even. Then Aut(C) ≤ Altn.

Corollary. Aut(C) has no element of order 8.

σ ∈ Aut(C) of order 8. Then

σ = (1, 2, . . . , 8)(9, . . . , 16) . . . (65, . . . , 72)

since σ4 has no fixed points. So sign(σ) = −1, a contradiction.

(This corollary was known before and is already implied by the
Sloane-Thompson Theorem.)



C = C⊥ ≤ F72
2 , doubly even, extremal, so d(C) = 16

Theoretical results, p even.

Theorem. (N. 2012)

Let τ ∈ Aut(C) of order 2. Then C is a free F2〈τ〉-module.

I Let R = F2〈τ〉 the free F2〈τ〉-module, S = F2 the simple one.
I Then C = Ra ⊕ Sb with 2a+ b = 36.
I F := FixC(τ) = {c ∈ C | cτ = c} ∼= Sa+b, C(1− τ) ∼= Sa.
I τ = (1, 2)(3, 4) . . . (71, 72).
I F ∼= π(F ), π(c) = (c2, c4, c6, . . . , c72) ∈ F36

2 .
I Fact: π(F ) = π(C(1− τ))⊥ ⊇ D = D⊥ ⊇ π(C(1− τ)).
I d(F ) ≥ d(C) = 16, so d(D) ≥ d(π(F )) ≥ 8.
I There are 41 such extremal self-dual codes D (Gaborit etal).
I No code D has a proper overcode with minimum distance ≥ 8.
I This can also be seen a priori considering weight enumerators.
I So π(F ) = D and hence a+ b = 18, so a = 18, b = 0.



Theorem: C is a free F2〈τ〉-module.
Corollary. Aut(C) has no element of order 8.

g ∈ Aut(C) of order 8. Then C is a free F2〈g4〉-module, hence also a
free F2〈g〉-module of rank dim(C)/8 = 36/8 = 9/2 a contradiction.

Corollary. Aut(C) has no subgroup Q8.

Use a theorem by J. Carlson: If M is an F2Q8-module such that the
restriction of M to the center of Q8 is free, then M is free.

Corollary. Aut(C) has no subgroup U ∼= C2 × C4, C8 or
C10.

I Let τ ∈ U of order 2, F = FixC(τ) ∼= π(F ) = D = D⊥ ≤ F36
2 .

I Then D is one of the 41 extremal codes classified by Gaborit etal.
I U/〈τ〉 ∼= C4 or C5 acts on D.
I None of the 41 extremal codes D has a fixed point free

automorphism of order 4 or an automorphism of order 5 with
exactly one fixed point.



Alt4 = 〈a, b, σ〉D 〈a, b〉 = V4, (Borello, N. 2013)
Computational results: No Alt4 ≤ Aut(C).

D

T

C=C
T

D

D

T

D V

Ve + Ve
0 1

41 poss.

Fix (ab)
C

Fix (b)
C

Fix (a)
C

3 possibilities for D
dim(D⊥/D) = 20, 20, 22.
C/D ≤ D⊥/D
maximal isotropic subspace.
V4 acts trivially on D⊥/D =: V .
V = V e0 ⊕ V e1
is an F2〈σ〉-module.
Unique possibility for Ce0.
Ce1 ≤ V e1 Hermitian
maximal singular F4-subspace.
Compute
all these subspaces as orbit
under the unitary group of V e1.
No extremal code is found.



τ ∈ Aut(C) order 2

Situation
C = C⊥ ≤ F24m

2 , extremal, i.e. d(C) = 4m+4, τ ∈ Aut(C) of order 2.
I Bouyuklieva: τ ∼ (1, 2) · · · (24m− 1, 24m) (Type (12m, 0)) unless
m = 5 where Type (48, 24) might be possible.

I Assume τ ∼ (1, 2) · · · (24m− 1, 24m).
I D′ := π(FixC(τ)) ≤ F12m

2 is the dual of some self-orthogonal
code

(D′)⊥ ⊆ D′

and d(D′) ≥ 2m+ 2.
I C is a free F2〈τ〉-module, if and only if D′ is self-dual.

Theorem (Borello, N. 2015)

If D′ 6= (D′)⊥, then d(D′) ≤ 4bm2 c+ 2.



Theoretical results, p = 2.

Theorem (Borello, N. 2015)

Let m ≥ 3 be odd and C = C⊥ an extremal doubly-even binary code
of length 24m.

I If τ ∈ Aut(C) is of order 2 and fixed point free then C is a free
F2〈τ〉-module.

I If 8 divides |Aut(C)|, then the Sylow 2-subgroups of Aut(C) are
isomorphic to C2 × C2 × C2, C2 × C4, or D8.



Conclusion

Search for extremal codes with automorphisms provides a nice
application for

I Classical theories in particular
I Quadratic Forms:
C = C⊥ doubly even, then n ∈ 8Z and Aut(C) ≤ Altn.

I which provides a characterisation of the permutation groups
admitting a self-dual doubly-even invariant code.

I Modular Representation Theory and Invariant Theory
n = 24m, d(C) = 4m+ 4, τ ∈ Aut(C) of Type (12m, 0).
If m is odd then C is a free F2〈τ〉-module.

They are also the motivation for explicit computations with a practical
and detailed use of the structure of the automorphism group.


