Stream Ciphers and Coding Theory

Tor Helleseth University of Bergen Norway

Outline

- Stream ciphers
- Building blocks in stream ciphers
 - m-sequences
 - Clock-control registers / Nonlinear combiner / Filter generator
- Correlation attacks connections to coding theory
- Algebraic attacks
 - Linearization attack
 - Rønjom-Helleseth attack
 - Multivariate representation / Univariate representation
- Algebraic attacks connections to coding theory
 - Algebraic immunity (AI)
 - Spectral immunity (SI)

Some known stream ciphers

- RC4 Secure Socket Layer (SSL) Protocol
- A5 Global System for Mobil

Communication (GSM)

- **E0** Bluetooth stream cipher
- **SNOW** Word oriented stream ciphers for software implementation (European NESSIE project)
- **ZUC** Chinese stream cipher
- Grain, Trivium, Mickey Stream ciphers from eSTREAM project initiated by ECRYPT – a European Network of Excellence in Cryptography

Requirements for a good keystream

- Good randomness distribution
- Long period
- High complexity

Motivation of Stream Ciphers

- Block ciphers are frequently used in a stream cipher mode (Counter, OFB, CFB mode)
- Direct construction may improve performance
 - Higher speed in software
 - Less complexity in hardware
 - Lower power consumption etc.
- ECRYPT A European Network of Excellence initiated an eSTREAM project
 - More than 30 streamciphers submitted 2005
 - 8 ciphers in hardware in the final phase 3
 - Grain, Trivium, Mickey, Pomaranch ...

m-Sequence (Example)

Properties of m-sequences

- Period $\varepsilon = 2^n 1$
- Balanced
- Run property
- All possible nonzero n-tuples occur during a period
- $s_t + s_{t+\tau} = s_{t+\gamma}$

m-Sequences in Stream Ciphers

Positive features

- + Randomness distribution
- + Long period
- + Easy to generate (using linear shift registers)

Negative features

- Too much linearity
- Easy to reconstruct g(x) from 2n consecutive bits
 (n linear equation in n unknowns, complexity O(n³))
 (Berlekamp-Massey algorithm, complexity O(nlog₂n))

Nonlinear Components in Stream Cipher

- Techniques to get higher linear complexity
 - The LFSRs are clocked irregularly
 - The LFSR bits are sent through a nonlinear function
 - Nonlinear combiner (several shift registers)
 - Attacks are using correlation attacks (based on coding theory)
 - Filter generator (one shift register)
 - Algebraic attacks
 - (solving nonlinear equations)

Clock Controlled LFSRs

• LFSR 1 generates an m-sequence mapped by D to an integer clock sequence c_t used to select the bits in another m-sequence u_t generated by LFSR 2 that is the output bit z_t

Nonlinear Combining LFSRs

• Using several LFSRs

Geffe generator

The LFSRs generate m-sequence of period $2^{n_i} - 1$, gcd $(n_i, n_j) = 1$

- $z = f(x_1, x_2, \dots, x_n) = x_1 x_2 + x_2 x_3 + x_3$
- $x_2 = 1 \rightarrow f = x_1$
- $x_2 = 0 \rightarrow f = x_3$
- Period = $(2^{n_1}-1)(2^{n_2}-1)(2^{n_3}-1)$
- Linear complexity = $n_1n_2+n_2n_3+n_3$

Correlation attack - Geffe generator

Correlation attack of Geffe generator

(NB! Prob($z = x_1$) = $\frac{3}{4}$)

- Guess initial state of LFSR 1
- Compare x_1 and z
 - If agreement $\frac{3}{4}$, guess is likely to be correct
 - If agreement $\frac{1}{2}$, guess is likely to be wrong

Binary Symmetric Channel-BSC_p

- $p = P(u_t \neq z_t)$
- Capacity of BSC_p

Coding Theory

- C is an [N,k,d] linear (block) code if C is a k-dimensional subspace of {0,1}^N of minimum Hamming distance d.
 (Rate of the code C is R = k/N)
- For some codes C there are efficient methods to decode any received vector to the closest codeword (Viterbi decoding, Iterative decoding)

Correlation Attack

• Correlation attacks are possible when there exists a crossover probability between the LFSR stream u_t and the key stream z_t

$$p = P(u_t \neq z_t) \neq 0.5$$

Correlation Attack

- Suppose a correlation $p_i \neq 0.5$ between i-th LFSR register and the keystream $(p_i = P(x_i = f(x_1, x_2, ..., x_n)))$
- Guess initial state for the i-th register and compare its output with the keystream
- Select initial state giving sequence closest to keystream
- **Complexity** is $O(\Sigma_i 2^{L_i} N_i)$
 - L_i length if i-th register
 - "Error-free decoding" decoding if $L_i/N_i < C(p_i)$
 - $N_i \approx 2 \cdot L_i / C(p_i)$ number of bits needed
- Complexity is much less than $O(N2^{L_1+L_2+...+L_n})$
- Note that this attack needs to guess a full register

Fast correlation attacks

- Need a correlation $p \neq 0.5$ between keystream and register
- Do not need to guess a full register
- Construct a new linear code where bits are linear combinations of a subset of bits in initial state of register.
- Each code position estimated by few $w \leq 4$ keystream bits
- Ideas from coding theory are used to construct the closest codeword i.e., bits in the subset
- Efficient implementations of Viterbi decoder with rate $R = 10^{-10}$ and error probability p = 0.49

Filter Generator

• LFSR of length n generating an m-sequence

(s_t) of period 2^{n} -1 determined by initial state (s₀,s₁,...,s_{n-1})

- Primitive characteristic polynomial with root α
- Nonlinear Boolean function $f(x_0, x_1, ..., x_{n-1})$ of degree d

 $f(x_0, x_1, ..., x_{n-1}) = \sum c_{a_0 a_1 ... a_{r-1}} x_{a_0} x_{a_1} ... x_{a_{r-1}} = \sum_A c_A x_A$

Example – Filter Generator

$$z_{0} = f(s_{0}, s_{1}, s_{2}, s_{3}) = s_{0}s_{1} + s_{1}s_{3} + s_{3} (= f_{0})$$

$$z_{1} = f(s_{1}, s_{2}, s_{3}, s_{4}) = f(s_{1}, s_{2}, s_{3}, s_{0} + s_{1}) = s_{0} + s_{1} + s_{0}s_{2} (= f_{1})$$

$$z_{2} = f(s_{2}, s_{3}, s_{4}, s_{5}) = f(s_{2}, s_{3}, s_{0} + s_{1}, s_{1} + s_{2}) = s_{1} + s_{2} + s_{1}s_{3} (= f_{2})$$

Multivariate Equations

 $z_{0} = s_{0}s_{1} + s_{1}s_{3} + s_{3}$ $z_{1} = s_{0}s_{2} + s_{0} + s_{1}$ $z_{2} = s_{1}s_{3} + s_{1} + s_{2}$ $z_{3} = s_{0}s_{2} + s_{1}s_{2} + s_{2} + s_{3}$ $z_{4} = s_{1}s_{3} + s_{2}s_{3} + s_{0} + s_{1} + s_{3}$ $z_{5} = s_{0}s_{2} + s_{0}s_{3} + s_{1}s_{2} + s_{1}s_{3} + s_{0} + s_{1} + s_{2} \dots$

Linearization gives a linear system with $\binom{4}{2} + \binom{4}{1} = 10$ unknowns

$$z_{0} = a_{4} + a_{8} + a_{3}$$

$$z_{1} = a_{5} + a_{0} + a_{1}$$

$$z_{2} = a_{8} + a_{1} + a_{2}$$

$$z_{3} = a_{5} + a_{7} + a_{2} + a_{3}$$

$$z_{4} = a_{8} + a_{9} + a_{0} + a_{1} + a_{3}$$

$$z_{5} = a_{5} + a_{6} + a_{7} + a_{8} + a_{0} + a_{1} + a_{2} \dots$$

Solve by using Gaussian elimination

Standard Linearization Attack

- Shift register m-sequence (s_t) of period 2ⁿ 1
- Boolean function $f(x_0, x_1, ..., x_{n-1})$ of degree d

$$z_t = f(s_t, s_{t+1}, \dots, s_{t+n-1}) = f_t(s_0, s_1, \dots, s_{n-1})$$

- Nonlinear equation system of degree d in n unknowns s_0, \dots, s_{n-1}
- Reduce to linear system: D unknown monomials
- $\mathbf{D} = \begin{pmatrix} n \\ d \end{pmatrix} + \begin{pmatrix} n \\ d-1 \end{pmatrix} + \dots + \begin{pmatrix} n \\ 1 \end{pmatrix}$
- Need about D keystream bits
- Complexity D^{ω} , $\omega = \log_2 7 \approx 2.807$

Example - Coefficient Sequences

- Let $s_{t+4} = s_{t+1} + s_t$ i.e., $s_4 = s_1 + s_0$
- Boolean function

 $f(x_0, x_1, x_2, x_3) = x_2 + x_0 x_1 + x_1 x_2 x_3 + x_0 x_1 x_2 x_3$

- $z_t = f(s_t, s_{t+1}, s_{t+2}, s_{t+3}) = s_{t+2} + s_t s_{t+1} + s_{t+1} s_{t+2} s_{t+3} + s_t s_{t+1} s_{t+2} s_{t+3}$
- $z_0 = f_0(s_0, s_1, s_2, s_3) = s_2 + s_0 s_1 + s_1 s_2 s_3 + s_0 s_1 s_2 s_3$ • $z_1 = f_1(s_0, s_1, s_2, s_3) = s_3 + s_1 s_2 + s_0 s_1 s_3 + s_0 s_1 s_2 s_3 + s_0 s_1 s_2 s_3$ • $z_2 = f_2(s_0, s_1, s_2, s_3) = s_0 + s_1 + s_1 s_3 + s_2 s_3 + s_0 s_1 s_3 + s_1 s_2 s_3 + s_0 s_1 s_2 s_3$ • $z_3 = f_3(s_0, s_1, s_2, s_3) = s_1 + s_2 + s_0 s_2 + s_0 s_3 + s_1 s_3 + s_0 s_1 s_2 + s_0 s_1 s_2 s_3 + s_0 s_1 s_2 s_3$ • $z_4 = f_4(s_0, s_1, s_2, s_3) = s_1 + s_2 + s_3 + s_0 s_1 + s_0 s_2 + s_1 s_2 + s_0 s_1 s_3 + s_0 s_1 s_2 s_3$
- $z_5 = f_5(s_0, s_1, s_2, s_3) = s_0 + s_1 + s_2 + s_3 + s_1 s_3 + s_2 s_3 + s_0 s_1 s_2 + s_0 s_1 s_3 + s_0 s_1 s_2 s_3$

Some coefficient sequences

 $\begin{array}{ll} I = \{0,1,2,3\} & K_{I,t} = 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \\ I = \{0,2,3\} & K_{I,t} = 0 \ 1 \ 0 \ 1 \ 0 \ 0 \\ I = \{1,3\} & K_{I,t} = 0 \ 0 \ 1 \ 1 \ 0 \ 1 \\ \end{array}$

Rønjom-Helleseth Algebraic Attack

- Recovering initial state of filter generator in complexity
 - Pre-computation $O(D (log_2 D)^3)$
 - Attack O(D)
 - Need D keystream bits
- Main idea Coefficient sequences of $I = \{i_0, i_1, ..., i_{r-1}\}$
 - Consider (binary) coefficient $K_{I,t}$ in $f_t(s_0, s_1, ..., s_{n-1})$ of the monomial $s_I = s_{i_0} s_{i_1} ... s_{i_{r-1}}$ at time t
 - $K_{I,t}$ obeys some nice recursions that can be computed
 - Construct a recursion generating all coefficient sequences for all $K_{I,t}$ for all I with $|I| \ge 2$ $p(x) = \prod_{2 \le wt(i) \le d} (x + \alpha^j) = \sum p_i x^j$
 - Gives a simple linear equation system in **n** variables

Key Argument in Attack

- From the received keystream z_j for j=0,1,..,D-1 compute for t=0,1,..,n-1
 - $z_{t}^{*} = \sum_{j} p_{j} z_{t+j} \qquad (= \sum_{j} p_{j} f_{t+j}(s_{0}, s_{1}, ..., s_{n-1}))$ $= \sum_{j} p_{j} \sum_{I} s_{I} K_{I,t+j}$ $= \sum_{I} s_{I} \sum_{j} p_{j} K_{I,t+j}$ $= \sum_{|I| \le 1} s_{I} \sum p_{j} K_{I,t+j}$ $= \text{Affine in } s_{0}, s_{1}, ..., s_{n-1}$

gives a linear n x n system of equations for finding the (initial state) $s_0, s_1, ..., s_{n-1}$

Multivariate - Univariate

- Let $x = \sum_{i} x_i \alpha_i$ where $\alpha_1, \dots, \alpha_n$ basis $GF(2^n)$
- 1-1 correspondence $GF(2)^n \leftrightarrow GF(2^n)=GF(q)$
- $(x_1, \dots, x_n) \leftrightarrow x$
- Then Boolean function "becomes univariate"

 $\mathbf{f}(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \mathbf{f}(\mathbf{x})$

for some polynomial f(x) in $GF(2^n)[x]$ of degree at most 2^n-2 (if we do not care for the value at 0)

• The degree d of $f(x_1, ..., x_n)$ is the largest wt(j)such that a coefficient in f(x) of x^j is nonzero

Rønjom-Helleseth Attack - Univariate

- Let L be the shift operator of the LFSR - $L(s_{t},...,s_{t+n-1}) = (s_{t+1},...,s_{t+n})$
- Define $f(\alpha^t) = f(L^t(s_0, ..., s_{n-1}))$
- Let x denote the unknown initial state, then $-z_t = f(x\alpha^t)$ where we want to find x
- Univariate equation system in x

$$\begin{split} &-z_0 = f_0(x) = f(x) = c_0 + c_1 \quad x + \ldots + c_{q-2} \qquad x^{q-2} \\ &-z_1 = f_1(x) = f(x\alpha) = c_0 + c_1 \alpha x + \ldots + c_{q-2} \alpha^{q-2} \quad x^{q-2} \\ &-z_2 = f_2(x) = f(x\alpha^2) = c_0 + c_1 \alpha^2 x + \ldots + c_{q-2} \alpha^{2(q-2)} x^{q-2} \end{split}$$

Coefficient sequences - Univariate

• The coefficient sequence for x^k for $f_t(x)$ is $w_t = c_k \alpha^{kt}$

and has characteristic polynomial $m(x) = x + \alpha^k$

• Computing

$$u_t = z_{t+1} + \alpha^k z_t = \Sigma b_i x^i$$

gives $b_k = 0$

• Using characteristic polynomial $m(x) = \prod_{i \neq k} (x + \alpha^i)$ on the keystream

 $u_t = \sum m_j z_{t+j} = c_k m(\alpha^k) \alpha^{kt} \mathbf{x}^k$

• Hence, we find x^k and x if $gcd(k,2^n-1)=1$

Algebraic attacks - Multivariate

Definition

The Boolean function $g(x_0,...,x_{n-1})$ is an annihilator of $f(x_0,...,x_{n-1})$ if $f(x_0,...,x_{n-1})$ $g(x_0,...,x_{n-1}) = 0$ for all $x_0,...,x_{n-1}$ Definition

The algebraic immunity of f AI(f) = min{deg(g) | fg=0 or (1+f)g=0}

Note that if $z_t=1$ then $f(s_t, \dots, s_{t+n}) g(s_t, \dots, s_{t+n}) = z_t g(s_t, \dots, s_{t+n})$ $= g_t(s_0, \dots, s_{n-1}) = 0$

Coding theory – Cyclic Codes

Definition –Linear $[N,k,d]_q$ code C is an $[N,k,d]_q$ code iff 1) C subset of dimension k over $GF(q)^N$ 2) $d = \min\{d_H(c_1, c_2) | c_1 \neq c_2 \in C\}$

Definition – Cyclic code $C = (G(x)) \pmod{x^n-1}$ (= Ideal generated by G(x))

Spectral Immunity

Definition

The spectral immunity of (z_t) is the smallest linear complexity(LC) of a sequence (u_t) over GF(2ⁿ) such that $z_t u_t = 0$ or $(1+z_t) u_t = 0$ for all t

Let $z_t = f(x\alpha^t)$ and $u_t = g(x\alpha^t)$ where (u_t) annihilates (z_t) Then if $z_t=1$ we obtain

 $g(x\alpha^t) = 0 \rightarrow \Sigma g_i \alpha^{ti} x^i = 0$ (Note: wt(g)=LC(u_t))

- Linear system in the LC unknowns xⁱ¹, xⁱ²,..., x^{iLC}
- Knowing $2 \cdot LC(u_t)$ bits finds x^{i_1} , ... and hence x

Spectral immunity and cyclic codes(I)

Theorem

Let $z_t = f(x\alpha^t)$ and $u_t = g(x\alpha^t)$ be such that f(x) g(x) = 0 for all x in GF(2ⁿ) Then g(x) is a codeword in the cyclic code C_f with symbols from GF(2ⁿ) and generator polynomial $G_f = gcd(f(x)+1, x^{q-1}+1)$

Proof:

Follows since f(x) is Boolean and only takes on the values 0 and 1. Therefore the elements in $GF(2^n)$ are zeros of either f(x) or f(x)+1

Spectral immunity and cyclic codes(II)

Theorem

The spectral immunity(SI) of (z_t) is the smallest weight of a codeword in the codes over GF(2ⁿ) with generator polynomials

> $G_{f} = gcd(f(x)+1, x^{q-1}+1)$ $G_{f+1} = gcd(f(x), x^{q-1}+1)$

Corollary SI \leq D = $\begin{pmatrix} n \\ 1 \end{pmatrix} + \begin{pmatrix} n \\ 2 \end{pmatrix} + \dots + \begin{pmatrix} n \\ AI \end{pmatrix}$

SI versus AI

Corollary
SI
$$\leq$$
 D = $\begin{pmatrix} n \\ 1 \end{pmatrix}$ + $\begin{pmatrix} n \\ 2 \end{pmatrix}$ + ... + $\begin{pmatrix} n \\ AI \end{pmatrix}$

- SI large \rightarrow AI large
- AI Large \rightarrow SI large

Can use codes G_f and G_{f+1} to evaluate AI AI = min{ wt(i) | $g_i \neq 0$ for g(x) in C_f or C_{f+1} }

Tapping positions of Filter generator

- Let f be a Boolean function in k variables $f(x_1,...,x_k)$
- $z_t = f(s_{t+i_1}, s_{t+i_2}, \dots, s_{t+i_k}), \quad 0 \le i_1 \le i_2 \le \dots \le i_k \le n$
- In most applications $k \le 20$

Rule-of-thumb

Select tapping positions such that all differences between $\{i_1, i_2, \dots, i_k\}$ are different.

"Bad" tapping positions

Example

- Let $z_t = f(s_0, s_1, ..., s_{k-1})$, i.e., tapping positions $T = \{0, 1, ..., k-1\}$
- Let N_0 resp. N_1 be the zeros (resp. ones) of f
- Since f is balanced $|N_0| = |N_1| = 2^{k-1}$
- $z_0 = f(s_0, s_1, ..., s_{k-1})$ implies $(s_0, s_1, ..., s_{k-1}) \in N_{z_0}$
- $z_1 = f(s_1, s_2, ..., s_k)$ implies $(s_1, s_2, ..., s_k) \in N_{z_1}$
- There are $\approx 2^{k-1}$ possibilities for $(s_0, s_1, ..., s_k)$
- Next $z_2 = f(s_2, s_3, ..., s_{k+1})$ implies $(s_2, s_3, ..., s_{k+1}) \in N_{z_2}$
- Similarly there are $\approx 2^{k-1}$ possibilities for $(s_0, s_1, \dots, s_{k+1})$
- Continuing gives finally $\approx 2^{k-1}$ possibilities for $(s_0, s_1, ..., s_{n-1})$
- Testing all 2^{k-1} possibilities finds initial state

"Better" tapping positions

• Subspace metric

 $d_{S}(U,V) = \dim(U) + \dim(V) - 2\dim(U+V)$

- Each tapping position defines a cyclic subspace
- Let $G = [1 \alpha \alpha^2 \dots \alpha^{2^{n-2}}] = [g_0 g_1 \dots g_{2^{n-2}}]$, n x (2ⁿ-1) matrix
- Let $S_0 = (s_0, s_1, ..., s_{n-1})$ then $s_t = S_0 \cdot g_t$

Tapping positions $\{i_1, i_2, \dots, i_k\}$

t=0:
$$V = \langle g_{i_1}, g_{i_2}, ..., g_{i_k} \rangle$$

t=1: αV

t=2ⁿ-2: $\alpha^{2^{n}-2}V$

Cyclic subspace codes: $C = \{ \alpha^t V | t=0,1,...,2^n-2 \}$

- Good such code exists with $d_{min} = 2k-2$ is shown by:
 - E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv,
 "Subspace polyomials ad cyclic Subspace Codes"

"Bad Subspace" tapping positions

$$s_{i_1} = S_0 \cdot g_{i_1}$$

... $V = \langle g_{i_1}, ..., g_{i_k} \rangle$
 $s_{i_k} = S_0 \cdot g_{i_k}$

$$\begin{split} s_{i_{1}+\tau} = & S_{0} \cdot g_{i_{1}+\tau} \\ & \dots & \alpha^{\tau} \ V = < g_{i_{1}+\tau}, \dots, g_{i_{k}+\tau} \\ s_{i_{k}+\tau} = & S_{0} \cdot g_{i_{k}+\tau} \end{split}$$

Suppose $d_{S}(V, \alpha^{\tau}V) = 2$ i.e., $\dim(V+\alpha^{\tau}V)=k+1$

 $z_0 = f(s_{i_1}, \dots, s_{i_k}) \quad \text{implies } 2^{k-1} \text{ choices of } (s_{i_1}, \dots, s_{i_k})$ $z_{\tau} = f(s_{i_{1+\tau}}, \dots, s_{i_{k+\tau}}) \quad \text{implies } 2^{k-1} \text{ choices of } (s_{i_{1+\tau}}, \dots, s_{i_{k+\tau}})$

- This leads to 2^{k-1} possibilities of $(s_{i_1}, \dots, s_{i_k}, s_{i_1+\tau})$ since wlog $V+\alpha^{\tau}V$ is spanned by $(g_{i_1}, \dots, g_{i_k}, g_{i_1+\tau})$
- Continuing this argument gives many bits of initial state

Summary

- Stream ciphers
- Correlation attacks and decoding of codes
- Algebraic attacks
 - Linearization attack
 - Rønjom-Helleseth attack
- Spectral immunity(SI) over GF(2ⁿ)
- Connections between SI and cyclic codes
- Connections between the spectral immunity(SI) and the algebraic immunity(AI)
- Connections between choice of tapping positions and good subspace codes

References

- S. Rønjom and T. Helleseth, A new attack on the filter generator, *IEEE Trans. Inf. Theory*, vol. 53, no. 5, pp. 1752-1758, May 2007
- T. Helleseth and S. Rønjom, Simplifying algebraic attacks with univariate analysis," in *Proceedings of the 2011 IEEE Information Theory and Applications Workshop (ITA)*, IEEE, Feb. 2011, pp. 1-7.
- S. Rønjom and T. Helleseth, Attacking the filter generator over GF(2^m), in Arithmetic of Finite Fields, ser. *Lecture Notes in Computer Science*, vol. 4547, pp. 264-275.
- S. Rønjom and T. Helleseth, The linear vector space spanned by the nonlinear filter generator, in Sequences, Subsequences, and Consequences, ser. *Lecture Notes in Computer Science*, vol. 4893, 2007, pp. 169-183.
- G. Gong, S. Rønjom, T. Helleseth, and H. Hu, Fast discrete Fourier spectra attacks on stream ciphers, *IEEE Trans. Inf. Theory*, vol. 57, no. 8, pp. 5555-5565, Aug. 2011
- E. Ben-Sasson, T. Etzion, A. Gabizon, N. Raviv, Subspace Polynomials and Cyclic Subspace codes, unpublished manuscript