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Outline

Stream ciphers
Building blocks in stream ciphers

* m-sequences
* Clock-control registers / Nonlinear combiner / Filter generator

Correlation attacks - connections to coding theory

Algebraic attacks

* Linearization attack
* Ronjom-Helleseth attack

* Multivariate representation / Univariate representation

Algebraic attacks - connections to coding theory
* Algebraic immunity (AI)
* Spectral immunity (SI)



Some known stream ciphers
RC4 - Secure Socket Layer (SSL) Protocol

AS - Global System for Mobil
Communication (GSM)
E( - Bluetooth stream cipher

SNOW - Word oriented stream ciphers for
software implementation
(European NESSIE project)

ZUC - Chinese stream cipher

Grain, Trivium, Mickey — Stream ciphers from
eSTREAM project initiated by ECRYPT — a
European Network of Excellence in Cryptography



Stream Cipher

Key Key
Pseudorandom- Pseudorandom-
generator generator

\ Keystream Keystream
Plaintext Ciphertext Plaintext
»® - » (& >

Requirements for a good keystream
- Good randomness distribution
- Long period
- High complexity



Motivation of Stream Ciphers

* Block ciphers are frequently used in a
stream cipher mode (Counter, OFB, CFB mode)
* Direct construction may improve performance
- Higher speed 1n software
- Less complexity in hardware
- Lower power consumption etc.

« ECRYPT - A European Network of Excellence
initiated an eSTREAM project
- More than 30 streamciphers submitted 2005
- 8 ciphers in hardware in the final phase 3
- Grain, Trivium, Mickey, Pomaranch ...



m-Sequence (Example)

Str4 = Str1T Sy

ES g(x)=x*+x +1
AN

(s) : 000100110101111...

Properties of m-sequences

* Period e =2"- 1

 Balanced

* Run property

* All possible nonzero n-tuples occur during a period
® St S Sy



m-Sequences in Stream Ciphers

Positive features
+ Randomness distribution
+ Long period
+ Easy to generate (using linear shift registers)

Negative features
- Too much linearity
- Easy to reconstruct g(x) from 2n consecutive bits
(n linear equation in n unknowns, complexity O(n’))
(Berlekamp-Massey algorithm, complexity O(nlog,n))



Nonlinear Components in Stream Cipher

e Tecl

I

la

niques to get higher linear complexity

I'he LFSRs are clocked irregularly

I'he LFSR bits are sent through a nonlinear function

- Nonlinear combiner (several shift registers)
- Attacks are using correlation attacks
(based on coding theory)
- Filter generator (one shift register)
- Algebraic attacks
(solving nonlinear equations)



Clock Controlled LESRs

LFSR 1 =
@ .

V4
LFSR 2 % /l\ t

 LFSR 1 generates an m-sequence mapped by D to an
integer clock sequence c, used to select the bits in

another m-sequence u, generated by LFSR 2 that is the
output bit z,




Nonlinear Combining LFSRs

 Using several LFSRs
llt1
LFSR 1 \
LFSR 2 > f
u
LFSR n
f(X{,X5,...,X,)) = X ;500 XiXigeXi



Getfe generator

X1
LFSR 1

X2
LFSR2 |— f 7 ‘
LFSR 3

The LFSRs generate m-sequence of period 2" - 1, ged (n;,n))=1
o 7 =1(X{,Xy,..-,X,) = XXy X, X5X;

* X,=1 - =X

¢ X,=0 — f=x,

* Period = (2"1-1)(2"-1)(27-1)

* Linear complexity = n;n,+n,n;+n;



Correlation attack - Getfe generator

X1
LFSR 1

X2
LFSR2 |— " f Z ‘
LFSR 3

Correlation attack of Geffe generator
(NB! Prob(z =x,) = %)
- Guess 1nitial state of LFSR 1
- Compare x, and z
- If agreement 7, guess 1s likely to be correct
- [f agreement %, guess 1s likely to be wrong



Binary Symmetric Channel-BSC

1-p
Sender 0 >< 0 Receiver
" p
U, 1 1 Z
l-p

* p="P(u,#z)
* Capacity of BSC,

C(p)=1+plog, p+(1-p)log,(1-p)

C(p)-1
\ J C(0.25)=10.19

p=1/2




Message
"| Encoding

u

Coding Theory

Noise

CodewordI (L Received

k bits

r =c+e
c=ul
N bits

" Decoding

Decoded word

c*

* Cisan[N,k,d] linear (block) code if C is a k-dimensional

subspace of {0,1}N of minimum Hamming distance d.
(Rate of the code Cis R=k/N)

 For some codes C there are efficient methods to decode

any received vector to the closest codeword

(Viterbi decoding, Iterative decoding)



Correlation Attack

LFSR —t Z,

Binary Symmetric Channel (BSC)

Noise

U,

ah
LFSR )

Zt‘

* Correlation attacks are possible when there exists a
crossover probability between the LFSR stream u, and
the key stream z,

p=Pu#z)#0.5



Correlation Attack

Suppose a correlation p. # 0.5 between 1-th LFSR
register and the keystream (p;, = P(x=1(x,,X,,...,X,))

Guess 1nitial state for the 1-th register and compare its
output with the keystream

Select mitial state giving sequence closest to keystream

Complexity is O(X.25 N))
- L. length 1f 1-th register
- ”Error—free decoding” decoding if L.,/N, < C(p,)
- N. =2-L,/C(p;) - number of bits needed
Complexity is much less than O(N2ki *L2*-+Ln)

Note that this attack needs to guess a full register



Fast correlation attacks

Need a correlation p #0.5 between keystream and register
Do not need to guess a full register

Construct a new linear code where bits are linear
combinations of a subset of bits 1n 1nitial state of register.

Each code position estimated by few w <4 keystream bits

Ideas from coding theory are used to construct the

closest codeword 1.e., bits in the subset

Efficient implementations of Viterbi decoder with rate
R =101 and error probability p=0.49



Filter Generator
« LESR of length n generating an m-sequence
(s,) of period 2"-1 determined by 1nitial state (s;,S,...,S,_;)
 Primitive characteristic polynomial with root o

* Nonlinear Boolean function f(x,,x,,...,X, ;) of degree d

/ 7 9\ Keystream

> LFSRS [r—- Zt — f(stjst_|_l,...,st_|_n_l)
%{ Z , — ft(SO,Sl,...,Sn_l)
f(XgsX 505X 1) = Z Capayar g XagX, KXo = 24 CaXa



Example — Filter Generator

wr g(x)=x*x+1

< — —I—

v

Z:= SSt+1 T Se418:3 T Sa3

Zy = 1(50,81,8,,53) =508, F8;85+s3 (= 1)
z, = 1(81,82,83,84) = 1(81,82,83,5018))  =sgts;tses,  (=1)
2, = 1(8,83,54,85) = 1(85,83,80T81,8118y) =sFs,%s;5; (= 1)



Multivariate Equations

Zo= S¢S17818378;

Z1= 808,180ty

Z)= 81551818,

Z3= S(S,TS1S,1TS, 185

Zy= S1S37S,83 TSy 1S ;18,3

Zs5= SpSy1TS(S31T81S,18{S31SyTS; TS,

Linearization gives a linear system with (;) + (‘11) = 10 unknowns
Zy= a, T agt+ a;
Z,= astTa,t q,
Z,= agt a;t+ a,
Zy= asT a;ta, T &
Z,= agtagtayta;+ a;
Zs= astTas+ta;Tagt+ta,ta; +a,
Solve by using Gaussian elimination



Standard Linearization Attack

Shift register m-sequence (s,) of period 2" - 1

Boolean function f(x,x,,...,x,, ;) of degree d
Z, = H(SpSeresSem1) = (805815058,

Nonlinear equation system of degree d in

n unknowns s,....,s_ |

Reduce to linear system: D unknown monomaials
D=(da) + (1) Tt (1)

Need about D keystream bits

Complexity D®, o =log, 7 = 2.807



Example - Coefficient Sequences

* Lets,,=s. TS 1.€., 5,=8,TS,
e Boolean function
(XX 1,X0,X3) = XXX TX XXX X X, X5

* 27881 15812:8043) = Spra TS S TS 18p2Si3 TSt 180425143

* 2o 15(50:81552,83) = SyF88,F88,85F 50515253
* 2= 11(50,81,8,,83) = 831,57t S8283 T50515,83
* Zy=15(50,81,82,83) = 818, 18;8518,83 +805,83F8;8,8;+ $0515253
* Z3=15(50,81,85,83) = 818,808y T8¢8318;83F5(S S, 58,83 55,55,
* Z,=14(80,51,82,83) = 18, F831808 188,155,158 8;+ 50515253

* Z5= 15(S0,81,82,83) = STS +8,1S3+8S3+8,85% 5088, 50818375055,

Some coefficient sequences
[={0,1,2,3} K, =111111..
[={0,2,3} Ki=010100..
[={1,3} Ki=001101..



Ronjom-Helleseth Algebraic Attack

« Recovering initial state of filter generator in complexity
- Pre-computation O(D (log,D)?)
- Attack O(D)
- Need D keystream bits

* Main 1dea - Coefficient sequences of [={1,,1;,...,1.;}
- Consider (binary) coefficient K,  in f(s,,s;,...,8,.1)
of the monomial s;=s; s; ...s;  attimet
- K|, obeys some nice recursions that can be computed
- Construct a recursion generating all coefficient
sequences for all K for all I with [I}>2
P(X) =1, < yyjyed (xto)) =X P; X/
- Gives a simple linear equation system in n variables



Key Argument in Attack

* From the received keystream z; for j=0,1,..,D-1
compute for t=0,1,..,n-1
z, = 2 PiZy:; (= 2 pitii(SsS15e-5851)
=25 Py 2y SiK
=25 8; 2 Py
= 2o Sp 2 ik
= Affine 1n s,S{,...,S,,_

gives a linear n X n system of equations for

finding the (initial state) sg,s;,...,S

n-1



Multivariate - Univariate

* Letx =2 x. a. where a,,...,0, basis GF(2")

* 1-1 correspondence GF(2)* < GF(2")=GF(q)

* (Xy5...,X,) <> X

* Then Boolean function ”becomes univariate”

f(x,,...,x,) = 1(X)

for some polynomial f(x) in GF(2")[x] of degree
at most 2°-2 (1f we do not care for the value at 0)

* The degree d of f(x,,...,x,) 1s the largest wt(j)
such that a coefficient in f(x) of x/ is nonzero



Ronjom-Helleseth Attack - Univariate
* Let L be the shift operator of the LFSR

- L(Sta' y 'DSt+n-1) - (St+19° . 'ast+n)

* Define f(a') = f(L'(s,...,S,.1))

* Let x denote the unknown 1nitial state, then
— z,= 1(xa') where we want to find x

« Univariate equation system 1n x
—z,=f(x) =1(x) =cy+ ¢ x+..+c, x42
—z; = fj(x) = f(xa) =¢y+ cyax+..+c ,al? xI?
— 7z, = ,(x) = f(xa?)=c,+ c,a?x + ...+ Cq-2 02(a-2) xa-2



Coefficient sequences - Univariate

The coefficient sequence for x* for f(x) is
W, = 0k
and has characteristic polynomial m(x) = x + aoX
Computing
u=z,,+ oz, =X b, x
gives b, =0

Using characteristic polynomial m(x) = IT,,(x + o)
on the keystream

u, = X mz,; = cm(a’) ok x
Hence, we find x* and x if ged(k,2-1)=1



Algebraic attacks - Multivariate

Definition
The Boolean function g(X,,...,X,_;) 1s an annihilator of
f(xg,-..,X,.1) 1f

f(Xgs---5X,.1) €(Xps----X,,.) = 0 for all x,,....x

Definition
The algebraic immunity of £

AI(f) = min{deg(g) | fg=0 or (1+1f)g=0}

Note that i1f z=1 then

{(Sp- - »Spip) E(Sp--+sSein) = Z E(Sps- - +5Seip)
= 8(Sg+++58.1) =0



Coding theory — Cyclic Codes

Definition —Linear [N,k.d] q code

C 1s an [N,k,d], code iff
1) C subset of dimension k over GF(q)N
2)d=min{dy( ¢, ¢c,) | ;£ ¢, € C}

Definition — Cyclic code
C =(G(x)) (mod x"-1)
( = Ideal generated by G(x) )



Spectral Immunity

Definition

The spectral immunity of (z,) 1s the smallest linear

complexity(LC) of a sequence (u,) over GF(2") such that
z,u,= 0 or (1+z) u=0 for all t

Let z, = f(xa') and u, = g(xa') where (u,) annihilates (z,)
Then if z=1 we obtain

g(xo)=0— X g a'x'=0 (Note: wt(g)=LC(u,))
 Linear system in the LC unknowns x'1, x2,..., X'LC
« Knowing 2-LC(u,) bits finds x'I, ... and hence x



Spectral immunity and cyclic codes(I)

Theorem
Let z, = f(xa') and u, = g(xa') be such that

f(x) g(x) = 0 for all x in GF(2")
Then g(x) 1s a codeword in the cyclic code C; with
symbols from GF(2") and generator polynomial

G.= ged(f(x)+1,x91+1)

Proof:
Follows since f(x) 1s Boolean and only takes on the
values 0 and 1. Therefore the elements in GF(2") are
zeros of either f(x) or f(x)+1



Spectral immunity and cyclic codes(1I)

Theorem
The spectral immunity(SI) of (z,) 1s the smallest
weight of a codeword 1n the codes over GF(2") with
generator polynomials

G, = ged(f(x)+1,x91+1)

Gry, = ged(fx),xo1+1)

Corollary
SISD=(111) + (12l ) +...+(£I)



SI versus Al

Corollary
SI=D=(1) + (%) +..+(CA)

» Sl large — Al large
- Al Large - Sl large

Can use codes G;and G, , to evaluate Al
Al =min{ wt(1) | g, 70 for g(x) in C;or Cs,,}



Tapping positions of Filter generator

* Let f be a Boolean function in k variables {(x,...,x,)

 In most applications k <20

Rule-of-thumb

Select tapping positions such that all differences
between {1, 1,, ... ,1, } are different.



”Bad” tapping positions

Example
* Let z=1(sy, Sy,---» S_1), 1.€., tapping positions T={0,1,....k-1}

Let N, resp. N, be the zeros (resp. ones) of T
* Since fis balanced |N,|=|N,|[=2"

* 7,=1(Sp, Si5---» Sp.1) IMplies (sy, Sys---» 1) E Nzo
o z,=1(sy, Sp,..., 8 ) 1mplies (s, s5,..., 8 ) € NZl
 There are = 2% possibilities for (s, sy,..., S;)

* Next z,=1(s,, S3,..., Siy) 1mplies (s,, S3,..., S;1) € N22
 Similarly there are =~ 2¥! possibilities for (s, S;,..., Si.1)
 Continuing gives finally = 2! possibilities for (s, s;5..., S,.;)
« Testing all 2! possibilities finds initial state



“Better” tapping positions

e Subspace metric
dg(U,V) = dim(U) + dim(V) - 2dim(U+V)
« Each tapping position defines a cyclic subspace
e LetG=[laad®...0*"?]=[gyg ... &n,],n x (2"-1) matrix
* Let S;=(sy,S,---,S,.1) then s=S,-g,
Tapping positions {1;,1,...,1; }

t=0: V=<g .88 ~
t=1: aV
t=2n_2: a2V

Cyclic subspace codes: C= { o'V | t=0,1,...,2"-2}

* Good such code exists with d_. = 2k-2 1s shown by:
— E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv,

“Subspace polyomials ad cyclic Subspace Codes”



“Bad Subspace” tapping positions

Si1:SO'gi1 Silﬂzso'gim
V=<gi,..., &~ e af V=<

Sik_SO'gik Sikﬂzso'gikﬂ

gi1+'[9 R glk+’[>

Suppose dg(V, a*V) =2 1.e., dim(V+a'V)=k+1

z5=1(s; ..., ;) implies 2! choices of (s;
z =1(s;

112" Slk

) implies 2! choices of (s; S. )

g+ Sl i

» This leads to 2! possibilities of (s;,..., S; , S;,.,) since wlog

V+oV is spanned by (g, ... €. & .2)

e Continuing this argument gives many bits of initial state



Summary

Stream ciphers
Correlation attacks and decoding of codes

Algebraic attacks

— Linearization attack
— Roenjom-Helleseth attack

Spectral immunity(SI) over GF(2%)
Connections between SI and cyclic codes

Connections between the spectral immunity(SI) and
the algebraic immunity(Al)

Connections between choice of tapping positions and
good subspace codes
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