
Stream Ciphers and Coding
Theory

 Tor Helleseth
 University of Bergen
 Norway

Outline
•  Stream ciphers
•  Building blocks in stream ciphers

• m-sequences
• Clock-control registers / Nonlinear combiner / Filter generator

•  Correlation attacks - connections to coding theory
•  Algebraic attacks

•  Linearization attack
• Rønjom-Helleseth attack

•  Multivariate representation / Univariate representation

•  Algebraic attacks - connections to coding theory
•  Algebraic immunity (AI)
•  Spectral immunity (SI)

Some known stream ciphers
•  RC4 - Secure Socket Layer (SSL) Protocol
•  A5 - Global System for Mobil
 Communication (GSM)
•  E0 - Bluetooth stream cipher
•  SNOW - Word oriented stream ciphers for
 software implementation
 (European NESSIE project)
•  ZUC - Chinese stream cipher

•  Grain, Trivium, Mickey – Stream ciphers from
eSTREAM project initiated by ECRYPT – a
European Network of Excellence in Cryptography

 Stream Cipher

Plaintext

Key

Pseudorandom-
generator

⊕

Key

Pseudorandom-
generator

⊕
Plaintext Ciphertext

Keystream Keystream

Requirements for a good keystream
 - Good randomness distribution
 - Long period
 - High complexity

Motivation of Stream Ciphers
•  Block ciphers are frequently used in a
 stream cipher mode (Counter, OFB, CFB mode)
•  Direct construction may improve performance
 - Higher speed in software
 - Less complexity in hardware
 - Lower power consumption etc.

•  ECRYPT - A European Network of Excellence
 initiated an eSTREAM project
 - More than 30 streamciphers submitted 2005
 - 8 ciphers in hardware in the final phase 3
 - Grain, Trivium, Mickey, Pomaranch …

m-Sequence (Example)

(st) : 000100110101111…

 st+4 = st+1+ st
g(x) = x4 + x +1

Properties of m-sequences
•  Period ε = 2n - 1
•  Balanced
•  Run property
•  All possible nonzero n-tuples occur during a period
•  st + st+τ= st+γ

 m-Sequences in Stream Ciphers

Positive features
 + Randomness distribution
 + Long period
 + Easy to generate (using linear shift registers)

Negative features
 - Too much linearity
 - Easy to reconstruct g(x) from 2n consecutive bits
 (n linear equation in n unknowns, complexity O(n3))
 (Berlekamp-Massey algorithm, complexity O(nlog2n))

Nonlinear Components in Stream Cipher

•  Techniques to get higher linear complexity
 - The LFSRs are clocked irregularly
 - The LFSR bits are sent through a nonlinear function
 - Nonlinear combiner (several shift registers)
 - Attacks are using correlation attacks
 (based on coding theory)
 - Filter generator (one shift register)
 - Algebraic attacks
 (solving nonlinear equations)

Clock Controlled LFSRs

•  LFSR 1 generates an m-sequence mapped by D to an
integer clock sequence ct used to select the bits in
another m-sequence ut generated by LFSR 2 that is the
output bit zt

LFSR 1

LFSR 2
ut

ct

zt

 D

Nonlinear Combining LFSRs
•  Using several LFSRs

 . . .

 f

 ...

 LFSR 1

zt
LFSR 2

LFSR n

ut
1

ut
2

ut
n

f(x1,x2,...,xn) = Σ ai1i2..in xi1xi2...xin

Geffe generator

The LFSRs generate m-sequence of period 2ni - 1, gcd (ni,nj)=1
•  z = f(x1,x2,…,xn) = x1x2+x2x3+x3
•  x2=1 → f = x1
•  x2=0 → f = x3
•  Period = (2n1-1)(2n2-1)(2n3-1)
•  Linear complexity = n1n2+n2n3+n3

f z

x1

x2

x3

LFSR 1

LFSR 2

LFSR 3

 Correlation attack - Geffe generator

Correlation attack of Geffe generator
(NB! Prob(z = x1) = ¾)
 - Guess initial state of LFSR 1
 - Compare x1 and z
 - If agreement ¾ , guess is likely to be correct
 - If agreement ½ , guess is likely to be wrong

f
 z

x1

x2

x3

 LFSR 1

 LFSR 2

 LFSR 3

Binary Symmetric Channel-BSCp

•  p = P(ut ≠zt)
•  Capacity of BSCp

)1(log)1(log1)(22 pppppC −−++=
C(p)=1

p=1/2

Sender

 ut

 Receiver

 zt

0 0

1 1

 1-p

 1-p

p
p

C(0.25) = 0.19

 Coding Theory

Codeword

 c = u G
Encoding

Message

 u
Decoding

Noise

 Received

 r = c+e
 Decoded word

 c*

•  C is an [N,k,d] linear (block) code if C is a k-dimensional

 subspace of {0,1}N of minimum Hamming distance d.

 (Rate of the code C is R = k/N)

•  For some codes C there are efficient methods to decode

 any received vector to the closest codeword

 (Viterbi decoding, Iterative decoding)

 k bits N bits

Correlation Attack

•  Correlation attacks are possible when there exists a
crossover probability between the LFSR stream ut and
the key stream zt

 p = P(ut ≠ zt) ≠ 0.5

ut

 Noise

 zt LFSR

Binary Symmetric Channel (BSC)

 LFSR ut zt

.

 Correlation Attack
•  Suppose a correlation pi ≠ 0.5 between i-th LFSR

register and the keystream (pi = P(xi=f(x1,x2,…,xn))
•  Guess initial state for the i-th register and compare its

output with the keystream
•  Select initial state giving sequence closest to keystream

•  Complexity is O(Σi2Li Ni)
 - Li length if i-th register
 - ”Error–free decoding” decoding if Li/Ni < C(pi)
 - Ni ≈ 2·Li/C(pi) - number of bits needed
•  Complexity is much less than O(N2Li +L2+...+Ln)

•  Note that this attack needs to guess a full register

Fast correlation attacks
•  Need a correlation p ≠0.5 between keystream and register
•  Do not need to guess a full register
•  Construct a new linear code where bits are linear

combinations of a subset of bits in initial state of register.
•  Each code position estimated by few w ≤4 keystream bits

•  Ideas from coding theory are used to construct the
 closest codeword i.e., bits in the subset
•  Efficient implementations of Viterbi decoder with rate
 R = 10-10 and error probability p = 0.49

 Filter Generator

 . . .

 f

...
LFSRS

zt

•  LFSR of length n generating an m-sequence

 (st) of period 2n-1 determined by initial state (s0,s1,...,sn-1)

•  Primitive characteristic polynomial with root α

•  Nonlinear Boolean function f(x0,x1,...,xn-1) of degree d

f(x0,x1,...,xn-1) = Σ ca0a1..ar-1 xa0xa1
...xar-1 = ΣA cAxA

Keystream
 zt = f(st,st+1,...,st+n-1)
 = ft(s0,s1,...,sn-1)

Example – Filter Generator

 zt = stst+1 + st+1st+3 + st+3

st st+1 st+2 st+3

·

f(x0,x1,x2,x3) = x0x1+x1x3+x3

·

z0 = f(s0,s1,s2,s3) = s0s1+s1s3+s3 (= f0)
z1 = f(s1,s2,s3,s4) = f(s1,s2,s3,s0+s1) = s0+s1+s0s2 (= f1)

z2 = f(s2,s3,s4,s5) = f(s2,s3,s0+s1,s1+s2) = s1+s2+s1s3 (= f2)

 g(x)=x4+x+1
st+4=st+1+st

Multivariate Equations
 z0 = s0s1+s1s3+s3
 z1 = s0s2+s0+s1
 z2 = s1s3+s1+s2
 z3 = s0s2+s1s2+s2+s3
 z4 = s1s3+s2s3+s0+s1+s3
 z5 = s0s2+s0s3+s1s2+s1s3+s0+s1+s2 ...

Linearization gives a linear system with () + () = 10 unknowns
 z0 = a4 + a8 + a3
 z1 = a5 + a0 + a1
 z2 = a8 + a1+ a2
 z3 = a5 + a7 + a2 + a3
 z4 = a8 + a9 + a0 + a1 + a3
 z5 = a5 + a6 + a7 + a8 + a0 + a1 + a2 ...
Solve by using Gaussian elimination

4 4
2 1

Standard Linearization Attack
•  Shift register m-sequence (st) of period 2n - 1
•  Boolean function f(x0,x1,...,xn-1) of degree d
 zt = f(st,st+1,...,st+n-1) = ft(s0,s1,...,sn-1)
•  Nonlinear equation system of degree d in
 n unknowns s0,...,sn-1
•  Reduce to linear system: D unknown monomials
•  D = () + () + ... + ()
•  Need about D keystream bits
•  Complexity Dω , ω =log2 7 ≈ 2.807

n n n
d d-1 1

Example - Coefficient Sequences
•  Let st+4=st+1+st i.e., s4=s1+s0
•  Boolean function
 f(x0,x1,x2,x3) = x2+x0x1+x1x2x3+x0x1x2x3
•  zt=f(st,st+1,st+2,st+3) = st+2+stst+1+st+1st+2st+3+stst+1st+2st+3

•  z0 = f0(s0,s1,s2,s3) = s2+s0s1+s1s2s3+ s0s1s2s3
•  z1 = f1(s0,s1,s2,s3) = s3+s1s2+ s0s2s3 +s0s1s2s3
•  z2 = f2(s0,s1,s2,s3) = s0+s1+s1s3+s2s3 +s0s1s3+s1s2s3+ s0s1s2s3
•  z3 = f3(s0,s1,s2,s3) = s1+s2+s0s2 +s0s3+s1s3+s0s1s2+ s0s2s3 +s0s1s2s3
•  z4 = f4(s0,s1,s2,s3) = s1+s2+s3+s0s1+s0s2+s1s2+s0s1s3+ s0s1s2s3
•  z5 = f5(s0,s1,s2,s3) = s0+s1+s2+s3+s1s3+s2s3+ s0s1s2+ s0s1s3+s0s1s2s3

Some coefficient sequences
 I={0,1,2,3} KI,t= 1 1 1 1 1 1...
 I={0,2,3} KI,t= 0 1 0 1 0 0...
 I={1,3} KI,t= 0 0 1 1 0 1...

Rønjom-Helleseth Algebraic Attack
•  Recovering initial state of filter generator in complexity
 - Pre-computation O(D (log2D)3)
 - Attack O(D)
 - Need D keystream bits

•  Main idea - Coefficient sequences of I={i0,i1,...,ir-1}
 - Consider (binary) coefficient KI,t in ft(s0,s1,...,sn-1)
 of the monomial sI=si0

si1...sir-1 at time t
 - KI,t obeys some nice recursions that can be computed

 - Construct a recursion generating all coefficient
 sequences for all KI,t for all I with |I|≥2
 p(x) = П2 ≤ wt(j)≤d (x+αj) = Σ pj xj
 - Gives a simple linear equation system in n variables

Key Argument in Attack
•  From the received keystream zj for j=0,1,..,D-1

compute for t=0,1,..,n-1
 zt

* = Σj pjzt+j (= Σj pjft+j(s0,s1,...,sn-1))
 = Σj pj ΣI sIKI,t+j
 = ΣI sI Σj pjKI,t+j

 = Σ|I|≤1 sI Σ pjKI,t+j
 = Affine in s0,s1,...,sn-1
 gives a linear n x n system of equations for
 finding the (initial state) s0,s1,...,sn-1

Multivariate - Univariate
•  Let x = Σi xi αi where α1,…,αn basis GF(2n)
•  1-1 correspondence GF(2)n ↔ GF(2n)=GF(q)
•  (x1,…,xn) ↔ x
•  Then Boolean function ”becomes univariate”
 f(x1,…,xn) = f (x)
 for some polynomial f(x) in GF(2n)[x] of degree
 at most 2n-2 (if we do not care for the value at 0)
•  The degree d of f(x1,…,xn) is the largest wt(j)
 such that a coefficient in f(x) of xj is nonzero

Rønjom-Helleseth Attack - Univariate

•  Let L be the shift operator of the LFSR
– L(st,…,st+n-1) = (st+1,…,st+n)

•  Define f(αt) = f(Lt(s0,…,sn-1))
•  Let x denote the unknown initial state, then

–  zt = f(xαt) where we want to find x
•  Univariate equation system in x

–  z0 = f0(x) = f(x) = c0 + c1 x + …+ cq-2 xq-2

–  z1 = f1(x) = f(xα) = c0 + c1 α x + …+ cq-2 αq-2 xq-2

–  z2 = f2(x) = f(xα2)= c0+ c1α2
 x + …+ cq-2 α2(q-2) xq-2

………………

Coefficient sequences - Univariate
•  The coefficient sequence for xk for ft(x) is
 wt = ckαkt
 and has characteristic polynomial m(x) = x + αk
•  Computing
 ut = zt+1+ αkzt = Σ bi xi

 gives bk=0
•  Using characteristic polynomial m(x) = Пi≠k(x + αi)

on the keystream
 ut = Σ mjzt+j = ckm(αk) αkt xk
•  Hence, we find xk and x if gcd(k,2n-1)=1

Algebraic attacks - Multivariate
Definition
The Boolean function g(x0,…,xn-1) is an annihilator of
f(x0,…,xn-1) if
 f(x0,…,xn-1) g(x0,…,xn-1) = 0 for all x0,…,xn-1
Definition
The algebraic immunity of f
 AI(f) = min{deg(g) | fg=0 or (1+f)g=0}

Note that if zt=1 then
 f(st,…,st+n) g(st,…,st+n) = zt g(st,…,st+n)
 = gt(s0,…,sn-1) = 0

Coding theory – Cyclic Codes
Definition –Linear [N,k,d]q code
C is an [N,k,d]q code iff
 1) C subset of dimension k over GF(q)N
 2) d = min{dH(c1, c2) | c1≠ c2 ε C}

Definition – Cyclic code
C = (G(x)) (mod xn-1)
 (= Ideal generated by G(x))

Spectral Immunity
Definition
The spectral immunity of (zt) is the smallest linear
complexity(LC) of a sequence (ut) over GF(2n) such that
 zt ut = 0 or (1+zt) ut=0 for all t

Let zt = f(xαt) and ut = g(xαt) where (ut) annihilates (zt)
Then if zt=1 we obtain
 g(xαt) = 0 → Σ gi αti xi = 0 (Note: wt(g)=LC(ut))
•  Linear system in the LC unknowns xi1, xi2,…, xiLC

•  Knowing 2·LC(ut) bits finds xi1, … and hence x

Spectral immunity and cyclic codes(I)

Theorem
Let zt = f(xαt) and ut = g(xαt) be such that
 f(x) g(x) = 0 for all x in GF(2n)
Then g(x) is a codeword in the cyclic code Cf with
symbols from GF(2n) and generator polynomial
 Gf = gcd(f(x)+1,xq-1+1)
Proof:
Follows since f(x) is Boolean and only takes on the
values 0 and 1. Therefore the elements in GF(2n) are
zeros of either f(x) or f(x)+1

Spectral immunity and cyclic codes(II)

Theorem
The spectral immunity(SI) of (zt) is the smallest
weight of a codeword in the codes over GF(2n) with
generator polynomials
 Gf = gcd(f(x)+1,xq-1+1)
 Gf+1 = gcd(f(x),xq-1+1)

Corollary
SI ≤ D = () + () + ... + () n n n

 1 2 AI

SI versus AI
Corollary
SI ≤ D = () + () + ... + ()

•  SI large → AI large
•  AI Large → SI large

Can use codes Gf and Gf+1 to evaluate AI
 AI = min{ wt(i) | gi ≠0 for g(x) in Cf or Cf+1}

n n n
1 2 AI

Tapping positions of Filter generator

•  Let f be a Boolean function in k variables f(x1,…,xk)
•  zt = f(st+i1, st+i2, …, st+ik), 0 ≤ i1< i2<…< ik<n
•  In most applications k ≤ 20

Rule-of-thumb
Select tapping positions such that all differences
between {i1, i2, … ,ik} are different.

”Bad” tapping positions
Example
•  Let zt=f(s0, s1,…, sk-1), i.e., tapping positions T={0,1,…,k-1}
•  Let N0 resp. N1 be the zeros (resp. ones) of f
•  Since f is balanced |N0|=|N1|=2k-1

•  z0=f(s0, s1,…, sk-1) implies (s0, s1,…, sk-1) ∈ Nz0

•  z1=f(s1, s2,…, sk) implies (s1, s2,…, sk) ∈ Nz1

•  There are ≈ 2k-1 possibilities for (s0, s1,…, sk)

•  Next z2 = f(s2, s3,…, sk+1) implies (s2, s3,…, sk+1) ∈ Nz2

•  Similarly there are ≈ 2k-1 possibilities for (s0, s1,…, sk+1)
•  Continuing gives finally ≈ 2k-1 possibilities for (s0, s1,…, sn-1)
•  Testing all 2k-1 possibilities finds initial state

“Better” tapping positions
•  Subspace metric
 dS(U,V) = dim(U) + dim(V) - 2dim(U+V)
•  Each tapping position defines a cyclic subspace
•  Let G = [1 α α2 … α2n-2] = [g0 g1 … g2n-2] , n x (2n-1) matrix
•  Let S0=(s0,s1,…,sn-1) then st=S0·gt
Tapping positions {i1,i2,…,ik}
 t=0: V = < gi1,gi2,…,gik >
 t=1: αV

 t=2n-2: α2n-2V
Cyclic subspace codes: C = { αt V | t=0,1,…,2n-2}

•  Good such code exists with dmin= 2k-2 is shown by:
–  E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv,
 “Subspace polyomials ad cyclic Subspace Codes”

“Bad Subspace” tapping positions

 si1=S0·gi1
 … V=<gi1,…, gik>

 sik=S0·gik

 si1+τ=S0·gi1+τ
 … ατ V=<gi1+τ,…, gik+τ>

sik+τ=S0·gik+τ

Suppose dS(V, ατV) = 2 i.e., dim(V+ατV)=k+1

z0=f(si1,…, sik) implies 2k-1 choices of (si1,…, sik)
zτ=f(si1+τ,…, sik+τ) implies 2k-1 choices of (si1+τ,…, sik+τ)

•  This leads to 2k-1 possibilities of (si1,…, sik, si1+τ) since wlog
 V+ατV is spanned by (gi1,…, gik, gi1+τ)
•  Continuing this argument gives many bits of initial state

Summary
•  Stream ciphers
•  Correlation attacks and decoding of codes
•  Algebraic attacks

–  Linearization attack
–  Rønjom-Helleseth attack

•  Spectral immunity(SI) over GF(2n)
•  Connections between SI and cyclic codes
•  Connections between the spectral immunity(SI) and

the algebraic immunity(AI)
•  Connections between choice of tapping positions and

good subspace codes

References
•  S. Rønjom and T. Helleseth, A new attack on the filter generator, IEEE Trans. Inf. Theory, vol.

53, no. 5, pp. 1752-1758, May 2007

•  T. Helleseth and S. Rønjom, Simplifying algebraic attacks with univariate analysis," in

Proceedings of the 2011 IEEE Information Theory and Applications Workshop (ITA), IEEE,
Feb. 2011, pp. 1-7.

•  S. Rønjom and T. Helleseth, Attacking the filter generator over GF(2m), in Arithmetic of Finite

Fields, ser. Lecture Notes in Computer Science, vol. 4547, pp. 264-275.

•  S. Rønjom and T. Helleseth, The linear vector space spanned by the nonlinear filter generator, in
Sequences, Subsequences, and Consequences, ser. Lecture Notes in Computer Science, vol.
4893, 2007, pp. 169-183.

•  G. Gong, S. Rønjom, T. Helleseth, and H. Hu, Fast discrete Fourier spectra attacks on stream
ciphers, IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5555-5565, Aug. 2011

•  E. Ben-Sasson, T. Etzion, A. Gabizon, N. Raviv, Subspace Polynomials and Cyclic Subspace
codes, unpublished manuscript

