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Outline  
•  Stream ciphers 
•  Building blocks in stream ciphers 

• m-sequences 
• Clock-control registers / Nonlinear combiner / Filter generator 

•  Correlation attacks - connections to coding theory 
•  Algebraic attacks 

•  Linearization attack 
• Rønjom-Helleseth attack  

•  Multivariate representation / Univariate representation 

•  Algebraic attacks - connections to coding theory 
•  Algebraic immunity (AI) 
•  Spectral immunity (SI) 

 



Some known stream ciphers 
•  RC4     -  Secure Socket Layer (SSL) Protocol 
•  A5        -  Global System for Mobil     
                                              Communication (GSM) 
•  E0         -  Bluetooth stream cipher 
•  SNOW -  Word oriented stream ciphers for   
                     software implementation  
                     (European  NESSIE project) 
•  ZUC     - Chinese stream cipher 

•  Grain, Trivium, Mickey – Stream ciphers from 
eSTREAM project initiated by ECRYPT – a 
European Network of Excellence in Cryptography 
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Requirements for a good keystream 
        - Good randomness distribution 
        - Long period 
        - High complexity 



Motivation of Stream Ciphers 
•  Block ciphers are frequently used in a  
    stream cipher mode (Counter, OFB, CFB mode) 
•  Direct construction may improve performance  
             - Higher speed in software 
             - Less complexity in hardware 
             - Lower power consumption etc. 
 
•  ECRYPT - A European Network of Excellence  
   initiated an eSTREAM project  
            - More than 30 streamciphers submitted 2005 
            - 8 ciphers in hardware in the final phase 3 
            - Grain, Trivium, Mickey, Pomaranch …   



m-Sequence  (Example) 

   
(st)   :     000100110101111… 

 st+4 =  st+1+ st 
g(x) = x4 + x +1 

Properties of m-sequences 
•  Period ε = 2n - 1 
•  Balanced 
•  Run property  
•  All possible nonzero n-tuples occur during a period 
•  st + st+τ= st+γ  



 m-Sequences in Stream Ciphers 

Positive features 
      + Randomness distribution 
      + Long period 
      + Easy to generate (using linear shift registers) 
 
Negative features 
      - Too much linearity 
      - Easy to reconstruct g(x) from 2n consecutive bits  
        (n  linear equation in n unknowns, complexity O(n3)) 
        (Berlekamp-Massey algorithm, complexity O(nlog2n)) 
         



Nonlinear Components in Stream Cipher 

•  Techniques to get higher linear complexity 
       - The LFSRs are clocked irregularly 
       - The LFSR bits are sent through a nonlinear function 
                - Nonlinear combiner (several shift registers) 
                         - Attacks are using correlation attacks  
                            (based on coding theory) 
                - Filter generator (one shift register) 
                         - Algebraic attacks 
                           (solving nonlinear equations) 



Clock Controlled LFSRs 

•  LFSR 1 generates an m-sequence mapped by D to an  
integer clock sequence ct used to select the bits in 
another m-sequence ut generated by LFSR 2 that is the 
output bit zt 
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Nonlinear Combining LFSRs  
•  Using several LFSRs 
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f(x1,x2,...,xn) = Σ ai1i2..in xi1xi2...xin 



Geffe generator  

The LFSRs generate m-sequence of period 2ni - 1, gcd (ni,nj)=1   
•  z = f(x1,x2,…,xn) = x1x2+x2x3+x3 
•  x2=1 → f = x1 
•  x2=0 → f = x3  
•  Period = (2n1-1)(2n2-1)(2n3-1)  
•  Linear complexity = n1n2+n2n3+n3 
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  Correlation attack - Geffe generator  

Correlation attack of Geffe generator  
(NB! Prob(z = x1) = ¾) 
     - Guess initial state of LFSR 1 
     - Compare x1 and z 
         - If agreement  ¾ , guess is likely to be correct  
         - If agreement  ½ , guess is likely to be wrong 
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Binary Symmetric Channel-BSCp 

•  p = P(ut ≠zt) 
•  Capacity of BSCp  
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 Coding Theory 
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•   C is an [N,k,d] linear (block) code if C is a k-dimensional    

    subspace of {0,1}N of minimum Hamming distance d.  

   (Rate of the code C is  R = k/N ) 

•    For some codes C there are efficient methods to decode  

   any received vector to the closest codeword  

              (Viterbi decoding, Iterative decoding) 

 k bits   N bits 



Correlation Attack 

•  Correlation attacks are possible when there exists a 
crossover probability between the LFSR stream ut and 
the key stream zt 

                        p = P(ut ≠ zt) ≠ 0.5  
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 Correlation Attack 
•  Suppose a correlation pi ≠ 0.5 between i-th LFSR 

register and the keystream  (pi = P(xi=f(x1,x2,…,xn)) 
•  Guess initial state for the i-th register and compare its 

output with the keystream  
•  Select initial state giving sequence closest to keystream  

•  Complexity is O(Σi2Li Ni) 
          -  Li length if i-th register 
          - ”Error–free decoding” decoding if Li/Ni < C(pi) 
          -  Ni ≈ 2·Li/C(pi)   -  number of bits needed  
•  Complexity is much less than O(N2Li +L2+...+Ln) 

•  Note that this attack needs to guess a full register  



Fast correlation attacks 
•  Need a correlation p ≠0.5 between keystream and register 
•  Do not need to guess a full register 
•  Construct a new linear code where bits are linear 

combinations of a subset of bits in initial state of register.  
•  Each code position estimated by few w ≤4 keystream bits 
 
•  Ideas from coding theory are used to construct the  
    closest codeword i.e., bits in the subset 
•  Efficient implementations of Viterbi decoder with rate  
           R = 10-10   and error probability  p = 0.49 



  Filter Generator  
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•  LFSR of length n generating an m-sequence  

 (st) of  period 2n-1 determined by initial state (s0,s1,...,sn-1) 

•  Primitive characteristic polynomial with root α 

•  Nonlinear Boolean function f(x0,x1,...,xn-1) of degree d 

f(x0,x1,...,xn-1) = Σ ca0a1..ar-1 xa0xa1
...xar-1 = ΣA cAxA 

Keystream 
   zt = f(st,st+1,...,st+n-1) 
       = ft(s0,s1,...,sn-1) 



Example – Filter Generator 

 zt = stst+1 + st+1st+3 + st+3    

st st+1 st+2 st+3 

· 

f(x0,x1,x2,x3) = x0x1+x1x3+x3 

· 

z0 = f(s0,s1,s2,s3)                                   = s0s1+s1s3+s3  (= f0 ) 
z1 = f(s1,s2,s3,s4) = f(s1,s2,s3,s0+s1)       = s0+s1+s0s2        (= f1) 

z2 = f(s2,s3,s4,s5) = f(s2,s3,s0+s1,s1+s2)  = s1+s2+s1s3        (= f2) 
                           ......................... 

  g(x)=x4+x+1  
st+4=st+1+st 



Multivariate Equations 
              z0 = s0s1+s1s3+s3 
            z1 = s0s2+s0+s1 
            z2 = s1s3+s1+s2 
            z3 = s0s2+s1s2+s2+s3 
            z4 = s1s3+s2s3+s0+s1+s3 
            z5 = s0s2+s0s3+s1s2+s1s3+s0+s1+s2    ... 
 
Linearization gives a linear system with (  ) + (  ) = 10 unknowns 
           z0 =  a4 + a8 + a3 
           z1 =  a5 + a0 + a1  
           z2 =  a8 + a1+ a2 
           z3 =  a5 + a7 + a2 + a3 
           z4 =  a8 + a9 + a0 + a1 + a3 
           z5 =  a5 + a6 + a7 + a8 + a0 + a1 + a2     ... 
Solve by using Gaussian elimination 

4            4 
2            1 



Standard Linearization Attack 
•  Shift register m-sequence (st) of period 2n - 1 
•  Boolean function f(x0,x1,...,xn-1) of degree d 
            zt  =  f(st,st+1,...,st+n-1) =  ft(s0,s1,...,sn-1) 
•  Nonlinear equation system of degree d in  
    n unknowns s0,...,sn-1 
•  Reduce to linear system: D unknown monomials 
•  D = (    )  +  (      )  + ... + (     ) 
•  Need about D keystream bits 
•  Complexity Dω ,  ω =log2 7 ≈ 2.807   

n                     n                             n                     
d                   d-1                            1 



Example - Coefficient Sequences 
•  Let st+4=st+1+st i.e., s4=s1+s0  
•  Boolean function  
               f(x0,x1,x2,x3)  = x2+x0x1+x1x2x3+x0x1x2x3 
•  zt=f(st,st+1,st+2,st+3) = st+2+stst+1+st+1st+2st+3+stst+1st+2st+3 
 
•  z0 = f0(s0,s1,s2,s3) = s2+s0s1+s1s2s3+                                    s0s1s2s3   
•  z1 = f1(s0,s1,s2,s3) = s3+s1s2+                                   s0s2s3 +s0s1s2s3   
•  z2 = f2(s0,s1,s2,s3) = s0+s1+s1s3+s2s3 +s0s1s3+s1s2s3+           s0s1s2s3   
•  z3 = f3(s0,s1,s2,s3) = s1+s2+s0s2 +s0s3+s1s3+s0s1s2+  s0s2s3 +s0s1s2s3  
•  z4 = f4(s0,s1,s2,s3) = s1+s2+s3+s0s1+s0s2+s1s2+s0s1s3+          s0s1s2s3   
•  z5 = f5(s0,s1,s2,s3) = s0+s1+s2+s3+s1s3+s2s3+ s0s1s2+ s0s1s3+s0s1s2s3 

Some coefficient sequences 
    I={0,1,2,3}    KI,t= 1 1 1 1 1 1... 
    I={0,2,3}       KI,t= 0 1 0 1 0 0... 
    I={1,3}          KI,t= 0 0 1 1 0 1... 



Rønjom-Helleseth Algebraic Attack  
•  Recovering initial state of filter generator in complexity 
         - Pre-computation O(D (log2D)3) 
         - Attack O(D) 
         - Need D keystream bits 
 
•  Main idea - Coefficient sequences of I={i0,i1,...,ir-1} 
       - Consider (binary) coefficient KI,t in ft(s0,s1,...,sn-1)  
          of the monomial sI=si0

si1...sir-1 at time t 
       - KI,t obeys some nice recursions that can be computed 

 -  Construct a recursion generating all coefficient  
          sequences for all KI,t for all I with |I|≥2 
                     p(x) = П2 ≤ wt(j)≤d (x+αj) = Σ pj xj 
       - Gives a simple linear equation system in n variables 



Key Argument in Attack 
•  From the received keystream zj for j=0,1,..,D-1 

compute for t=0,1,..,n-1  
                 zt

* = Σj pjzt+j        (= Σj pjft+j(s0,s1,...,sn-1)) 
                      = Σj pj ΣI sIKI,t+j  
                      = ΣI sI Σj pjKI,t+j  

                      =  Σ|I|≤1 sI Σ pjKI,t+j 
                      = Affine in s0,s1,...,sn-1 
   gives a linear n x n system of equations for  
   finding the  (initial state) s0,s1,...,sn-1 



Multivariate - Univariate 
•  Let x = Σi xi αi where α1,…,αn basis GF(2n)  
•  1-1 correspondence GF(2)n  ↔ GF(2n)=GF(q) 
•  (x1,…,xn) ↔ x 
•  Then Boolean function ”becomes univariate” 
                  f(x1,…,xn) = f (x) 
   for some polynomial f(x) in GF(2n)[x] of degree  
   at most 2n-2  (if we do not care for the value at 0) 
•  The degree d of f(x1,…,xn) is the largest wt(j)  
    such that a coefficient in f(x) of xj is nonzero  



Rønjom-Helleseth Attack - Univariate  

•  Let L be the shift operator of the LFSR 
– L(st,…,st+n-1) = (st+1,…,st+n)  

•  Define f(αt) = f(Lt(s0,…,sn-1)) 
•  Let x denote the unknown initial state, then 

–  zt = f(xαt)  where we want to find x 
•  Univariate equation system in x 

–  z0 = f0(x) = f(x)   = c0 +  c1     x + …+ cq-2           xq-2 

–  z1 = f1(x) = f(xα) = c0 +  c1 α x + …+ cq-2 αq-2    xq-2 

–  z2 = f2(x) = f(xα2)= c0+  c1α2
 x + …+ cq-2 α2(q-2) xq-2

                        
……………… 



Coefficient sequences - Univariate 
•  The coefficient sequence for xk for ft(x) is 
                   wt = ckαkt  
    and has characteristic polynomial m(x) = x + αk 
•  Computing 
                ut = zt+1+ αkzt = Σ bi xi 

    gives bk=0 
•  Using characteristic polynomial m(x) = Пi≠k(x + αi) 

on the keystream  
               ut = Σ mjzt+j = ckm(αk) αkt xk 
•  Hence, we find xk and x if gcd(k,2n-1)=1 



Algebraic attacks - Multivariate 
Definition 
The Boolean function g(x0,…,xn-1) is an annihilator of  
f(x0,…,xn-1)  if          
             f(x0,…,xn-1) g(x0,…,xn-1) = 0 for all x0,…,xn-1 
Definition 
The algebraic immunity of f  
     AI(f) = min{deg(g) | fg=0 or (1+f)g=0} 
 
Note that if zt=1 then  
        f(st,…,st+n) g(st,…,st+n) = zt g(st,…,st+n)  
                                              = gt(s0,…,sn-1) = 0 



Coding theory – Cyclic Codes 
Definition –Linear [N,k,d]q code 
C is an [N,k,d]q code iff  
      1) C subset of dimension k over GF(q)N 
      2) d = min{dH( c1, c2) | c1≠ c2 ε C} 
 
Definition – Cyclic code 
C  = (G(x))   (mod xn-1) 
   ( = Ideal generated by G(x) ) 



Spectral Immunity 
Definition 
The spectral immunity of (zt) is the smallest linear  
complexity(LC) of a sequence (ut) over GF(2n) such that  
             zt ut = 0 or (1+zt) ut=0 for all t 
 
Let zt = f(xαt) and ut = g(xαt) where (ut) annihilates (zt)  
Then if zt=1 we obtain 
         g(xαt) = 0 →  Σ gi αti xi = 0     (Note: wt(g)=LC(ut)) 
•  Linear system in the LC unknowns xi1, xi2,…, xiLC 

•  Knowing 2·LC(ut) bits finds xi1, … and hence x 



Spectral immunity and cyclic codes(I) 

Theorem 
Let zt = f(xαt) and ut = g(xαt) be such that   
             f(x) g(x) = 0 for all x in GF(2n) 
Then g(x) is a codeword in the cyclic code Cf with  
symbols from GF(2n) and generator polynomial 
                 Gf = gcd(f(x)+1,xq-1+1) 
Proof: 
Follows since f(x) is Boolean and only takes on the  
values 0 and 1. Therefore the elements in GF(2n) are  
zeros of either f(x) or f(x)+1 



Spectral immunity and cyclic codes(II) 

Theorem 
The spectral immunity(SI) of (zt) is the smallest  
weight of a codeword in the codes over GF(2n) with  
generator polynomials 
            Gf     = gcd(f(x)+1,xq-1+1) 
            Gf+1 = gcd(f(x),xq-1+1) 
 
Corollary 
SI ≤ D = (    )  +  (      )  + ... + (     ) n             n                       n 

 1             2                      AI  



SI versus AI 
Corollary 
SI ≤ D = (    )  +  (      )  + ... + (     ) 
 
•  SI large → AI large 
•  AI Large → SI large 

Can use codes Gf and Gf+1 to evaluate  AI  
         AI = min{ wt(i) | gi ≠0 for g(x) in Cf or Cf+1} 

n                  n                           n 
1                  2                          AI 



Tapping positions of Filter generator 

•  Let f be a Boolean function in k variables f(x1,…,xk) 
•  zt = f(st+i1, st+i2, …, st+ik),   0 ≤ i1< i2<…< ik<n 
•  In most applications k ≤ 20 
  
Rule-of-thumb 
Select tapping positions such that all differences 
between {i1, i2, … ,ik} are different. 
 
 
 
 



”Bad” tapping positions 
Example 
•  Let zt=f(s0, s1,…, sk-1), i.e.,  tapping positions T={0,1,…,k-1} 
•  Let N0  resp. N1 be the zeros (resp. ones) of f  
•  Since f is balanced |N0|=|N1|=2k-1 

•  z0=f(s0, s1,…, sk-1) implies  (s0, s1,…, sk-1) ∈ Nz0
   

•  z1=f(s1, s2,…, sk )   implies  (s1, s2,…, sk )  ∈ Nz1
   

•  There are ≈ 2k-1 possibilities for (s0, s1,…, sk) 
 
•  Next z2 = f(s2, s3,…, sk+1)  implies  (s2, s3,…, sk+1) ∈ Nz2

  
•  Similarly there are ≈ 2k-1 possibilities for (s0, s1,…, sk+1) 
•  Continuing gives finally ≈ 2k-1 possibilities for (s0, s1,…, sn-1) 
•  Testing all 2k-1 possibilities finds initial state 



“Better” tapping positions 
•  Subspace metric 
             dS(U,V) = dim(U) + dim(V) - 2dim(U+V) 
•  Each tapping position defines a cyclic subspace 
•  Let G = [1 α α2 … α2n-2] = [g0 g1 … g2n-2] , n x (2n-1) matrix 
•  Let S0=(s0,s1,…,sn-1) then st=S0·gt 
Tapping positions {i1,i2,…,ik}  
                      t=0:              V = < gi1,gi2,…,gik > 
                      t=1:            αV  
                                             ----- 
                  t=2n-2:           α2n-2V 
Cyclic subspace codes: C = { αt V | t=0,1,…,2n-2} 

•  Good such code exists with dmin= 2k-2 is shown by: 
–  E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv, 
    “Subspace polyomials ad cyclic Subspace Codes” 

 



“Bad Subspace” tapping positions 

 si1=S0·gi1 
      …               V=<gi1,…, gik> 

 sik=S0·gik 
 

 si1+τ=S0·gi1+τ 
      …           ατ V=<gi1+τ,…, gik+τ> 

sik+τ=S0·gik+τ 

 
Suppose  dS(V, ατV) = 2 i.e., dim(V+ατV)=k+1 
 
z0=f(si1,…, sik)       implies 2k-1 choices of  (si1,…, sik) 
zτ=f(si1+τ,…, sik+τ)  implies 2k-1 choices of  (si1+τ,…, sik+τ) 
 
•  This leads to 2k-1 possibilities of (si1,…, sik, si1+τ) since wlog  
     V+ατV is spanned by (gi1,…, gik, gi1+τ) 
•  Continuing this argument gives many bits of initial state 



Summary 
•  Stream ciphers 
•  Correlation attacks and decoding of codes 
•  Algebraic attacks 

–  Linearization attack 
–  Rønjom-Helleseth attack 

•  Spectral immunity(SI) over GF(2n) 
•  Connections between SI and cyclic codes 
•  Connections between the spectral immunity(SI) and 

the algebraic immunity(AI) 
•  Connections between choice of tapping positions and 

good subspace codes 
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