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Index Coding with Side Information

I introduced in 2006 by Bar-Yossef, Birk, Jayram & Kol

I has applications to video-on-demand and wireless networks

I equivalent problem to Network Coding

I many approaches to problem from graph theory
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Index Coding with Side-Information (Original Formula)

I The sender has a file X split into n packets
X = [X1, ...,Xn] ∈ Fn

q.

I There are n users {1, ..., n}.
I User i has side information {Xj : j ∈ Si}.
I User i requests packet Xi .

I I = {Si : i ∈ [n]} is an instance of the index coding with
side-information problem.

Problem 1 (The Main ICSI Problem)

What is the minimum number of transmissions required by the
sender to satisfy all n requests, if encoding of data is permitted?

I Related Structure: the side-information digraph



Index Coding with Side Information

Example 2

Sender has {X1,X2,X3,X4},Xi ∈ Ft
2. The receivers have

side-information:

D1 = {X2,X3,X4},D2 = {X1,X3,X4},

D3 = {X1,X2,X4},D4 = {X1,X2,X3}.

Choosing L = [1, 1, 1, 1] the sender broadcasts LX :
X1

X2

X3

X4

 −→ LX =
[

1 1 1 1
] 

X1

X2

X3

X4

 = X1 + X2 + X3 + X4

So the minimum number of transmissions is N = 1.



The Min-Rank of a Graph

Definition 3
Let G be a directed graph with adjacency matrix A.

minrankq(G ) := min{rankq(A + I ) : Supp(A) ⊂ Supp(A)}.

Theorem 4 (Bar-Yossef, Birk, Jayram, Kol 2006)

The minimum number of transmissions required for a linear index
code over F2 for the instance I is minrank(G ), where G is the
side-information graph of I.

I The minrank is NP-hard to compute (Peeters, 1996)



Bounds on the Min-Rank of a Graph

Theorem 5 (Haemers, Haviv & Langberg, Bar-Yossef et al)

For every undirected graph G of n vertices over Fq:

I α(G ) ≤ Θ(G ) ≤ minrankq(G ) ≤ χ(G )

I Ω(log n) ≤ minrankq(G (n, p)) ≤ O(n/ log n)

I Expected value of minrankq(G (n, p)) is (almost surely) Ω(
√

n)

I α(G ) is the max size of an independent set

I Θ(G ) is the Shannon capacity of G

I χ(G ) is the chromatic number of G



Graph Theory

Shanmugam, Dimakis, Langberg, “Graph Theory Versus Minimum
Rank for Index Coding,” (2014) arXiv.1402.3898
The authors:

I distinguish between ‘graph theoretic’ and ‘algebraic’ methods,

I give index coding schemes from graph theory that outperform
all known graph theoretic bounds,

I show all known graph theoretic bounds are withing log n of
the chromatic number,

I state that the minrank (algebraic) can outperform the
chromatic number by a polynomial factor.



Equivalence of Linear Network and Index Coding

Theorem 6 (El Rouyhab et al 2010)

There exists a linear network code if and only if there exists a
perfect linear index code.

Network Code Index Code



Index Coding with Side-Information (New Formula)

I The sender has a file X split into n packets
X = [X1, ...,Xn] ∈ Fn

q.

I There are m ≥ n users {1, ...,m}.
I User i has side information {Xj : j ∈ Si}.
I User i requests packet Xf (i), some surjection f : [m] −→ [n].

Problem 7 (The Main ICSI Problem)

What is the minimum number of transmissions required by the
sender to satisfy all m requests, if encoding of data is permitted?

I Related Structure: the side-information hypergraph



Data Retrieval

Definition 8
We say that L ∈ FN×n

q represents an linear I = (n,m,S , f ) of the
index coding problem with side information indexed by
S = {Si : i ∈ [m]} if for each receiver i ∈ [m] there is a decoding
map

Di : FN
q × Fn

q → Fq,

such that for some A ∈ Fn
q,Supp(A) ⊂ Si

Di (LX ,A) = Xf (i) ∀X ∈ Fn
q.



Decoding at the Receiver i

Let A ∈ Fn
q s.t. Supp(A) ⊂ Si . User i knows AX =

∑
j∈Si AjXj .

Let B ∈ FN
q such that

BL = A + ef (i). (1)

Then
BLX = AX + ef (i)X = AX + Xf (i).

So the existence of a decoder depends on the solvability of (1).

Di (LX ,A) = BLX − AX = Xf (i)



The Min-Rank

Theorem 9 (Dau, Skachek, Chee 2012)

The minimum number of transmissions required for an instance
I = (n,m, S , f ) of the index coding problem is

κ(I) := min{rank(U + Ef ) : Supp(Ui ) ⊂ Si , i ∈ [m]},

where Ef ∈ Fm×n
q has each ith row equal to ef (i).

I κ(I) is called the minrank of the system.

I κ(I) generalizes the minrank of the side-information graph

I κ(I) is NP-hard to compute.



Coded-Side Information

User i wants Pi . The sender transmits a packet at each time slot.

Slot Sent User 1? User 2? User 3?

1 P1 N Y N
2 P2 Y N N
3 P3 Y Y N
4 P1 + P2 N N Y
5 P1 + P2 + P3 Y Y Y

After 5 transmissions, all user requests have been satisfied.
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Index-Coding with Coded-Side Information (New 3-in-1)

I X ∈ Fn×t
q

I The sender has V SX ∈ FdS×t
q

I User i wants the packet RiX ∈ Ft
q,

I User i has side information (V (i),V (i)X ) ∈ Fdi×n
q × Fdi×t

q

I The sender transmits Y = LV SX ∈ FN×t
q , some L ∈ FN×dS

q

Objective 1

The sender aims to find an encoding LV (S)X that minimizes N
such that the demands of all users satisfied.

Case t = 1: Shum, Mingjun, Sung, “Broadcasting with Coded Side
Information”, IEEE 23rd PIMRC, vol. 89, no. 94, pp. 9-12, 2012.



An Instance of the ICCSI Problem

Definition 10
An instance of the Index Coding with Coded Side Information
(ICCSI) problem is a list

I = (t, n,m,X ,X S ,R),

satisfying:

I t, n,m are positive integers,

I X = ⊕i∈[m]X (i),

I X (i) := 〈V (i)〉 < Fn
q, dimX (i) = di ,

I X S := 〈V (S)〉 < Fn
q, dimX S = dS ,

I R ∈ Fm×n
q has rows Ri ∈ Fn

q,

I Ri ∈ X S , i ∈ [m].



Linear Index Encoding

Definition 11
Let N be a positive integer. The map

E : Fn×t
q → FN×t

q ,

is an Fq-index code for I (E is an I-IC) of length N if for each
i ∈ [m] there exists a decoding map

Di : FN×t
q ×X (i) → Ft

q,

satisfying
∀X ∈ Fn×t

q : Di (E (X ),A) = RiX ,

for some A ∈ X (i). E is called an Fq-linear I-IC if E (X ) = LV (S)X

for some L ∈ FN×dS
q . Then L represents the I-IC E .



Decoding Criteria

Lemma 12
L ∈ FN×ds

q represents an I-IC if and only if for each i ∈ [m],

Ri ∈
〈[

V (i)

LV (S)

]〉
.

User i can compute

RiX = AV (i)X + BLV (S)X ,

for any A ∈ Fdi
q ,B ∈ FN

q satisfying Ri = AV (i) + BLV (S).



The Min-Rank

Lemma 13 (BC)

The length of an optimal Fq-linear I-IC is κ(I) :=

min{rank(A + R) : A ∈ Fm×n
q ,Ai ∈ X (i) ∩ X S < Fn

q, ∀i ∈ [m]}.

I κ(I) is called the minrank of the instance I.

I κ(I) = drk(R,X ∩ X̃ ) = wrk(R + (X ∩ X̃ )), where X̃ = ⊕X S .



The Min-Rank

m = 6, n = 4,Ri = ei , i ∈ [m],R5 = e2,R6 = e1 over F2.

V (1) =

[
0 0 1 0
0 0 0 1

]
,V (2) =

[
1 0 0 0
0 0 0 1

]
,V (3) =

[
1 0 0 0
0 1 0 0

]
,

V (4) =

[
0 1 0 0
0 0 1 0

]
,V (5) =

[
1 0 0 0
0 0 1 0

]
,V (6) =

[
0 1 0 0
0 0 0 1

]
,

R + X =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

+



0 0 ∗ ∗
∗ 0 0 ∗
∗ ∗ 0 0
0 ∗ ∗ 0
∗ 0 ∗ 0
0 ∗ 0 ∗

 =



1 0 ∗ ∗
∗ 1 0 ∗
∗ ∗ 1 0
0 ∗ ∗ 1
∗ 1 ∗ 0
1 ∗ 0 ∗


The minrank is 3, so N = 3 transmissions are required.



Existence of an I-IC

Theorem 14 (BC)

Let I be an instance of an ICCSI problem and let

N = max{n − di : i ∈ [m]}.

Suppose that q > m. If L is chosen uniformly at random in FN×dS
q

then the probability that L represents a linear I-IC is at least
(1−m/q)N .

Corollary 15

If q > m then κ(I) ≤ max{n − di : i ∈ [m]}.

I Comparable with the Main Network Coding Theorem (see
Fragouli & Soljanin Network Coding Fundamentals).



The Min-Rank

m = 6, n = 4,Ri = ei , i ∈ [m],R5 = e2,R6 = e1 over F3.

V (1) =

[
0 0 1 0
0 0 0 1

]
,V (2) =

[
1 0 0 0
0 0 0 1

]
,V (3) =

[
1 0 0 0
0 1 0 0

]
,

V (4) =

[
0 1 0 0
0 0 1 0

]
,V (5) =

[
1 0 0 0
0 0 1 0

]
,V (6) =

[
0 1 0 0
0 0 0 1

]
,

R + X =



1 0 ∗ ∗
∗ 1 0 ∗
∗ ∗ 1 0
0 ∗ ∗ 1
∗ 1 ∗ 0
1 ∗ 0 ∗

 contains



1 0 1 1
1 1 0 2
2 1 1 0
0 1 2 1
2 1 1 0
1 1 0 2

 .

R + X has minrank 2 = N = n − di over F3.



Bounds on the Min-Rank

I Can we improve the bound
κ(I) ≤ max{n − di : i ∈ [m]}, q > m?

I An I-IC of length N exists if and only if, for all i ∈ [m],

(Ri + X (i)) ∩ L 6= ∅

where L = 〈LV (S)〉.

Problem 16
Find an upper bound on the number of N-dimensional subspaces L
that miss Ri + X (i) for at least one value of i ∈ [m].



Bounds on the Min-Rank

Using incidence matrices of designs we can construct I and
compute bounds on κ(I).

Theorem 17
(BC) There exist I-IC satisfying

I κ(I) ≤ m+1
2 (2-(n, k , λ) design),

I κ(I) = p2+p+1
2 (projective plane of order p = 2, 3).



Index Coding with Errors

Dau, Skachek, Chee, “Error Correction for Index Coding With Side
Information,” IEEE Trans on Inform. Th, (59), 3, 2013.

The authors:

I introduced index coding with error correction,

I gave several bounds on the length of an optimal δ-error index
code,

I gave a decoding algorithm based on syndrome decoding.



Error-Correction for Coded-Side Information

Definition 18
Let M⊂ Fn×t

q be the message space.

E : Fn×t
q → FN×t

q ,

is a δ-error correcting code for I of length N (E is (I, δ)-ECIC), if
for each i ∃ a decoding map

Di : FN×t
q ×X (i) → Ft

q,

such that for some A ∈ X (i).

Di (E (X ) + W ,A) = RiX

for all X ∈M and W ∈ FN×t
q , w(W ) ≤ δ.

E is linear if E (X ) = LV (S)X for some L ∈ FN×dS
q .



Decoding Criterion

Theorem 19 (BC)

Let I be an instance of an ICCSI problem and let N be a positive
integer. A matrix L ∈ FN×dS

q represents a linear (I, δ)-ECIC if and
only if for all i ∈ [m]

w
(

LV (S)(X − X ′)
)
≥ 2δ + 1,

for all X ,X ′ ∈M such that X − X ′ ∈ Z(i).

I Z(i) = {Z ∈ Fn×t
q : V (i)X = 0,RiX 6= 0}



Bounds on the Optimal Length of an ECIC: t = 1

I N (I, δ) = optimal length N of an δ-error correcting I.

I N(k , d) = optimal length ` of a Fq-[`, k , d ] code

I J (I) := {U < Fn
q : U\{0} ⊂ ∪i∈[m]Z(i)}.

I α(I) := max{dim U : U ∈ J (I)}
I α(I) generalizes the notion of an independent set.

Theorem 20 (BC)

Let I be an instance of the ICCSI problem with t = 1. Then

I N(α(I), 2δ + 1) ≤ N (I, δ),

I α(I) ≤ κ(I).



Further Bounds..

Theorem 21 (BC)

Let I be an instance of the ICCSI problem with t = 1. Then

I N (I, δ) ≤ N(κ(I), 2δ + 1) (κ-bound),

I κq(I) + 2δ ≤ Nq(I, δ) (Singleton Bound),

I if q ≥ κ(I) + 2δ − 1 then N (I, δ) = κ(I) + 2δ,

I there exists an Fq-linear (I, δ)-ECIC if

N > n − d − 1 + logq(m(q − 1)Vq(N, 2δ)),

where d = min{di : i ∈ [m]}.



Bounds on the Optimal Length of an ECIC: t > 1

I N (I, δ) = optimal length N of an δ-error correcting I.

I N(t, logq M, d) is the least integer N s.t. ∃ a code in FN×t
q of

minimum rank distance d and size M.

I J (I) := {U ⊂ Fn×t
q : X − X ′ ∈ Z(i)

δ some i , any X ,X ′ ∈ U}.
I α(I) := max{logq |U| : U ∈ J (I)}
I α(I) generalizes the notion of an independent set.

Theorem 22 (BC)

Let I be an instance of the ICCSI problem with t > 1. Then

I N(α(I), 2δ + 1) ≤ N (I, δ),

I N (I, δ) ≥ α(I)
t + 2δ if t ≥ N(t, α(I), 2δ + 1),

I N (I, δ) ≥ α(I)
t−2δ if t ≤ N(t, α(I), 2δ + 1),

I α(I) ≤ κ(I).



Decoding

I For Hamming errors a variation of syndrome decoding can be
used (high complexity).

I Adding further redundancy to the system, we can use a simple
matrix decoder (Silva et al 2010) to correct rank-metric errors
in linear time.



Decoding Over the Matrix Channel

The sender transmits:

A =

(
0δ×δ 0δ×t
0N×δ LV (S)X

)
,

The error matrix has the form

W =

(
W11 W12

W21 W22

)
,

and rank(W11) = rank(W ) = r ≤ δ. The receivers get

W =

(
W11 W12

W21 W22 + LV (S)X

)
−− >

(
W11 W12

0 LV (S)X

)
.



Decoding

1. Choose A ∈ Fdi
q .

2. Solve Ri + AV (i) = BLV S for some B ∈ FN
q .

3. Compute RiX = BY − AV (i)X .

In other words, the decoder computes M = [G |H], the reduced-row
echelon form of the matrix[

V (i) V (i)X

LV (S) Y

]
and solves for Z in ZA = Ri to retrieve RiX = ZB.



Side-Information Coverings

Lemma 23 (BC)

Given t, n,m,X , there exists an encoding of length N satisfying
every possible request R if and only if

N ≥ max{min{rank(U + R) : U ∈ X},R ∈ Fm×n
q }

= max{min{drk(R,U) : U ∈ X},R ∈ Fm×n
q }

= max{drk(R,X ),R ∈ Fm×n
q }

= ρrk(X )

= the rank-metric covering radius of X = X (1) ⊕ · · · ⊕ X (m).



The Caching Problem

M. A. Maddah-Ali, U. Niesen, “Fundamental Limits of Caching,”
arXiv.1209.5807.

I m users seek all or part of a file X ∈ Fn×t
q

I Each user has storage capacity di .

I Placement phase: the sender places data in each user’s cache
during low-traffic times.

I Delivery phase: the sender broadcasts data according to users
demands.

I User requests are unknown to the sender at the placement
phase.

Problem 24
How should data files be placed in order to minimize transmissions
during delivery?



A Caching Strategy

I There are m users each with storage capacity di , i ∈ [m].

I Choose X = ⊕i∈[m]X (i) s.t.

I dim X (i) = di

I X has optimal covering rank radius N

I Place X (i) in User i ’s cache.

I Then at the delivery phase all possible users’ requests can be
satisfied with N transmissions.

Problem 25
Construct codes X with low covering radius.



Final Remarks

I There is an analogue of the ICSI problem for subspace codes.
Each user i has some side information X (i) < Fn

q and the
sender transmits V < rowsp(X ) such that a requested
1-dimensional subspace of rowsp(X ) is contained in V + X (i).

I How should the ICSI problem be modelled for implementation
with MRD codes?

I What bounds and caching schemes in the caching problem
can be obtained via algebraic codes for the rank metric?


