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Nakić, Pavčević, Tactical
Decompositions of Designs
over Finite Fields, 2013

Cameron, Generalisation of
Fisher’s Inequality to Fields with
more than One Element, 1974

B., New 3-Designs
over the Binary
Field, 2013

Schwartz, Etzion, Codes
and Anticodes in the
Grassman Graph, 2002

Metsch, Bose-Burton Type
Theorems for Finite Projective,
Affine and Polar Spaces, 1999
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B., Etzion, Österg̊ard, Vardy, Wasser-
mann, On the Existence of q-Analogs
of Steiner Systems, 2013

Ray-Chaudhuri, Singhi,
q-Analogues of t-Designs
and Their Existence, 1989

Etzion, Vardy, On q-Analogs
of Steiner Systems and
Covering Designs, 2011
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Intersection Numbers for
Subspace Designs, 2014

B., q-Analogs of t-Wise
Balanced Designs over
Finite Fields, 2014

B., Kiermaier, Kohnert,
Laue, Large Sets of
Subspace Designs, 2014

Delsarte, Association Schemes
and t-Designs in Regular
Semilattices, 1976



B., Kerber, Laue, Systematic
Construction of q-Analogs of
Designs, 2005

Suzuki, 2-Designs
over GF (q),
1992

Thomas, Designs
over Finite
Fields, 1987

Suzuki, 2-Designs
over GF (2m),
1990

Ray-Chaudhuri, Schram, Designs
on Vectorspaces Constructed
Using Quadratic Forms, 1992

Thomas, Designs and Partial
Geometries over Finite Fields,
1996

Abe, Yoshiara, On Suzuki’s
Construction of 2-Designs
over GF (q), 1993

Itoh, A New Family of 2-Designs
over GF (q) Admitting SLm(qℓ),
1998

Tits, Sur les Analogues
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Automorphism Group of a Binary
q-Analog of the Fano Plane, 2015

Fazeli, Lovett, Vardy, Non-
trivial t-Designs over Finite
Fields Exist for All t, 2013
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Intersection Numbers for
Subspace Designs, 2014

B., q-Analogs of t-Wise
Balanced Designs over
Finite Fields, 2014

B., Kiermaier, Kohnert,
Laue, Large Sets of
Subspace Designs, 2014

Delsarte, Association Schemes
and t-Designs in Regular
Semilattices, 1976



B., Kerber, Laue, Systematic
Construction of q-Analogs of
Designs, 2005

Suzuki, 2-Designs
over GF (q),
1992

Thomas, Designs
over Finite
Fields, 1987

Suzuki, 2-Designs
over GF (2m),
1990

Ray-Chaudhuri, Schram, Designs
on Vectorspaces Constructed
Using Quadratic Forms, 1992

Thomas, Designs and Partial
Geometries over Finite Fields,
1996

Abe, Yoshiara, On Suzuki’s
Construction of 2-Designs
over GF (q), 1993

Itoh, A New Family of 2-Designs
over GF (q) Admitting SLm(qℓ),
1998

Tits, Sur les Analogues
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Automorphism Group of a Binary
q-Analog of the Fano Plane, 2015

Fazeli, Lovett, Vardy, Non-
trivial t-Designs over Finite
Fields Exist for All t, 2013
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B., Kohnert, Österg̊ard, Wasser-
mann, Large Sets of t-Designs
over Finite Fields, 2014

B., A Note on the Existence of
Non-Simple Designs over Finite
Fields, 2012

Cameron, Locally
Symmetric Designs,
1974

B., Some New
Designs over
Finite Fields, 2005

Heden, Sissokho, On the
Existence of a (2, 3)-Spread
in V (7, 2), 2011

Suzuki, On the
Inequalities of t-Designs
over a Finite Field, 1990

Kiermaier, Pavčević,
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row sum is λ = 3 for all rows
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gB := {gB | B ∈ B}✘✘✘✘✾
isomorphism class of B
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A(B) := {gB | g ∈ A}
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automorphism group of B
=̂ stabilizer
AB := {g ∈ A | gB = B}
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✄✄✎
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Orbit-Stabilizer-Theorem
A(B) ֌→ A/AB

AgB = gABg
−1

G=AB=AgB⇒g ∈NA(G )

⇒ candidates for possible
automorphism groups
can be reduced to
different conjugacy classes

⇒ the normalizer of
automorphims groups gives
hints for classification issues
(several papers by Laue)
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condensed
G -incidence matrix
used to represent
design admitting G
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Frobenius automorphism
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⋊

normalizer of
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some subgroups of GL(n, q) ...

Singer cycle
S(n, q)=〈σ〉≃F

∗
qn

Frobenius automorphism
F(n, q)=〈φ〉≃Aut(Fqn/Fq)

✻

�
�
�✒

❅
❅

❅■
⋊

normalizer of
a Singer cycle
N(n, q)=〈σ, φ〉

if ℓ divides n then 〈σ, φℓ〉 ≃ N(n/ℓ, qℓ)
if n prime then N(n, q) is maximal in GL(n, q)
N(n, q) is self-normalizing in GL(n, q)

Corollary
for primes n and q

different t-(n, k , λ; q) designs
admitting N(n, q) as a group of
automorphisms are non-isomorphic
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Thomas constructed the first non-trivial design
extended by Suzuki to an infinite series for all q

Sr (T ) := 〈b0 . . . br−1 | bi ∈ T , 0 ≤ i < r〉
Br := {Sr (T ) | T ∈

[
V
2

]
}

Theorem (Suzuki, 1990)
for n ≥ 7 with (n, 4) = 1 the set B2

defines a 2-(n, 3,
[3
2

]
q
; q) design admitting

N(n, q) as a group of automorphisms

under which conditions does Br

define a 2-(n, r + 1,
[
r+1
2

]
q
; q) design?

Theorem (Abe, Yoshiara, 1993)
the set Br is no design for q = 2
and 4 ≤ r + 1 < n ≤ 15
except for the pair r = 3, n = 7

conjecture: B3 is the dual of B2 for n = 7 and all q
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Theorem (Kramer, Mesner, 1976)
there exists a t-(n, k , λ; q) design

iff
∃ 0-1 solution x = [. . . , xK , . . .]

t of

K ∈
[
V
k

]

...[
V
t

]
∋ T · · · ζTK

·

...

xK

...

=

λ
...
λ

ζt,k = (ζTK ) with ζTK = ζ(T ,K )



Theorem (Kramer, Mesner, 1976)
there exists a t-(n, k , λ; q) design
admitting G ≤ Aut(L(V ))
as a group of automorphisms
iff
∃ 0-1 solution x = [. . . , xK , . . .]

t of

G (K ) ∈ G\\
[
V
k

]

...

G\\
[
V
t

]
∋ G (T ) · · · ζGTK

·

...

xK

...

=

λ
...
λ

ζGt,k = (ζGTK ) with ζGTK =
∑

K ′∈G(K)

ζ(T ,K ′)
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we consider Suzuki’s design...
2-(7, 3, 7; 2)

plain incidence matrix ζ2,3
2667 × 11811

prescribed group of automorphisms
normalizer of a singer cycle N(7, 2)
of order 889

ζ
N(7,2)
2,3 =




5 3 1 3 2 3 1 2 2 3 2 1 1 2 0
1 2 0 1 3 2 5 3 3 3 2 1 2 2 1
1 2 0 3 2 2 1 2 2 1 3 5 4 3 0




↑ ↑ ↑

19 solutions (non-isomorphic)
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a particular class of designs ...t-(n, k , λ; q) design B transitive
iff |AB\\

[
V
1

]
| = 1

Theorem (Miyakawa, Munemasa, Yoshiara, 1995)
B non-trivial transitive t-(n, k , λ; q) design, t ≥ 2
– if n = 6 then q ≡ 1 mod 3 and S(6, q) 6≤ AB ≤ N(6, q)
– if n prime then either AB = S(n, q) or AB = N(n, q)

⇒ Suzuki’s design is transitive

Theorem (Miyakawa, Munemasa, Yoshiara, 1995)
[λ, number of non-isom. 2-(7, 3, λ; q) designs B with AB = N(n, q)]

q = 2: [3, 2], [5, 14], [7, 19], [10, 30], [12, 90], [14, 55],
q = 2: [λ, 0] for λ = 1, 2, 4, 6, 8, 9, 11, 13, 15
q = 3: [5, 22], [λ, 0] for λ = 1, 2, 3, 4
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Theorem (B., Kerber, Laue, S. Braun, 2005–2015)
t-(n, k, λ; q) G |ζG

t,k
| λ

3-(8, 4, λ; 2) N(8, 2) 53×109 11
N(4, 22) 105×217 11, 15

2-(11, 3, λ; 2) N(11, 2) 31×2263 245, 252
2-(10, 3, λ; 2) N(10, 2) 20×633 15, 30, 45, 60, 75, 90, 105, 120
2-(9, 4, λ; 2) N(9, 2) 11×725 21, 63, 84, 126, 147, 189, 210, 252, 273, 315,

336, 378, 399, 441, 462, 504, 525, 567, 588, 630,
651, 693, 714, 756, 777, 819, 840, 882, 903, 945,
966, 1008, 1029, 1071, 1092, 1134, 1155,
1197, 1218, 1260, 1281, 1323

2-(9, 3, λ; 2) N(9, 2) 11×177 63
N(3, 23) 31×529 21, 22, 42, 43, 63
N(8, 2)×1 28×408 7, 12, 19, 24, 31, 36, 43, 48, 55, 60
M(3, 23) 40×460 49

2-(8, 4, λ; 2) N(4, 22) 15×217 21, 35, 56, 70, 91, 105, 126, 140, 161, 175, 196,
210, 231, 245, 266, 280, 301, 315

N(7, 2)×1 13×231 7, 14, 49, 56, 63, 98, 105, 112, 147, 154, 161,
196, 203, 210, 245, 252, 259, 294, 301, 308

2-(8, 3, λ; 2) N(4, 22) 15×105 21
2-(7, 3, λ; 2) N(7, 2) 3×15 3, 5, 7, 10, 12, 14,

S(7, 2) 21 × 93 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
2-(6, 3, λ; 2) 〈σ7〉 77×155 3, 6



... also for q = 3, 4 and 5

t-(n, k , λ; q) G |ζGt,k | λ

2-(8, 3, λ; 3) N(8, 3) 41 × 977 52, 104, 156
2-(7, 3, λ; 3) N(7, 3) 13 × 121 5, . . . , 60
2-(6, 3, λ; 3) 〈σ2, φ2〉 25 × 76 20

〈σ17, φ〉 93 × 234 16
S(5, 3)×1 51 × 150 8, 16, 20
〈σ2〉×1 91 × 280 8, 12, 16, 20

2-(6, 3, λ; 4) 〈σ3, φ〉 51 × 161 15, 35
〈σ3, φ〉×1 57 × 229 10, 25, 30, 35

2-(6, 3, λ; 5) N(6, 5) 53 × 248 78



further constructions ....



further constructions ....

t-(n, k , λ; q)



further constructions ....

t-(n, k , λ; q)
❅

❅
❅

❅
❅❅■

supplemented

t-(n, k ,
[
n−t
k−t

]
q
−λ; q)



further constructions ....

t-(n, k , λ; q)
❅

❅
❅

❅
❅❅■

supplemented

t-(n, k ,
[
n−t
k−t

]
q
−λ; q)

(t − 1)-(n − 1, k − 1, λ; q)

❍❍❍❍❍❍❥
derived



further constructions ....

t-(n, k , λ; q)
❅

❅
❅

❅
❅❅■

supplemented

t-(n, k ,
[
n−t
k−t

]
q
−λ; q)

(t − 1)-(n − 1, k − 1, λ; q)

❍❍❍❍❍❍❥
derived

Theorem (Suzuki, 1989)
(V ,B) t-(n, k , λ; q) design
i + j ≤ t, P ∈

[
V
i

]
, H ∈

[
V
n−j

]

⇒ |{B ∈ B | P ≤ B ≤ H}| = λ
[n−j−i

k−i ]q
[n−t
k−t]q



further constructions ....

t-(n, k , λ; q)
❅

❅
❅

❅
❅❅■

supplemented

t-(n, k ,
[
n−t
k−t

]
q
−λ; q)

(t − 1)-(n − 1, k − 1, λ; q)

❍❍❍❍❍❍❥
derived

Theorem (Suzuki, 1989)
(V ,B) t-(n, k , λ; q) design
i + j ≤ t, P ∈

[
V
i

]
, H ∈

[
V
n−j

]

⇒ |{B ∈ B | P ≤ B ≤ H}| = λ
[n−j−i

k−i ]q
[n−t
k−t]q

✟✟✟✟✟✟✙
(i= t−1, j=0) reduced

(t − 1)-(n, k , λ qn−t+1−1
qk−t+1−1

; q)



further constructions ....

t-(n, k , λ; q)
❅

❅
❅

❅
❅❅■

supplemented

t-(n, k ,
[
n−t
k−t

]
q
−λ; q)

(t − 1)-(n − 1, k − 1, λ; q)

❍❍❍❍❍❍❥
derived

Theorem (Suzuki, 1989)
(V ,B) t-(n, k , λ; q) design
i + j ≤ t, P ∈

[
V
i

]
, H ∈

[
V
n−j

]

⇒ |{B ∈ B | P ≤ B ≤ H}| = λ
[n−j−i

k−i ]q
[n−t
k−t]q

✟✟✟✟✟✟✙
(i= t−1, j=0) reduced

(t − 1)-(n, k , λ qn−t+1−1
qk−t+1−1

; q)

t-(n, n − k , λ
[
n−t
k

]
q
/
[
n−t
k−t

]
q
; q)

✂
✂
✂
✂
✂
✂
✂
✂
✂✂✌

dual
(i=0, j= t, ·⊥)



further constructions ....

t-(n, k , λ; q)
❅

❅
❅

❅
❅❅■

supplemented

t-(n, k ,
[
n−t
k−t

]
q
−λ; q)

(t − 1)-(n − 1, k − 1, λ; q)

❍❍❍❍❍❍❥
derived

Theorem (Suzuki, 1989)
(V ,B) t-(n, k , λ; q) design
i + j ≤ t, P ∈

[
V
i

]
, H ∈

[
V
n−j

]

⇒ |{B ∈ B | P ≤ B ≤ H}| = λ
[n−j−i

k−i ]q
[n−t
k−t]q
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[
n−t
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]
q
/
[
n−t
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]
q
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✂
✂
✂
✂
✂
✂
✂
✂
✂✂✌

dual
(i=0, j= t, ·⊥)

(t − 1)-(n − 1, k , λ qn−k−1
qk−t+1−1

; q)

❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆
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the existence of a design
for the reduced parameters

2-(9, 3, 21; 2)

by computer

2-(9, 4, 441; 2)

✻

❄

3-(10, 4, 21; 2)✟✟✟✟✟✙

der

❍❍❍❍❍❨

res

✟✟✟✟✟✯red
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Theorem (Kiermaier, Laue, 2014)
the existence of designs for derived
and residual parameters implies
the existence of a design
for the reduced parameters

2-(9, 3, 21; 2)

by computer

2-(9, 4, 441; 2)

✻

❄

3-(10, 4, 21; 2)✟✟✟✟✟✙

der

❍❍❍❍❍❨

res

✟✟✟✟✟✯red

2-(10, 4, 1785; 2)

Corollary (Kiermaier, Laue, 2014)
There exist designs with parameters
2-(8, 4, λ; 2) for λ = 63, 84, 147, 168, 189, 252, 273, 294
2-(10, 4, λ; 2) for λ = 1785, 1870, 3570, 3655, 5355
2-(8, 4, 91λ; 3) for λ = 5, 6, 7, . . . , 60
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further consequences?

take Suzuki’s design

2-(7, 3,
[3
2

]
q
; q)

❄

dual

2-(7, 4,
[
4
2

]
q
; q)

3-(8, 4,
[
3
2

]
q
; q)✟✟✟✟✟✙

der

❍❍❍❍❍❨

res ❅
❅
❅
❅
❅
❅❘

red

Corollary
there exists a family of

2-(8, 4, (q
6−1)(q3−1)

(q2−1)(q−1)
; q)

designs for all prime powers q



(t − 1)-(2t + 3, t + 1, λ qt+3
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(t − 1)-(2t + 3, t + 1, λ qt+3
−1

q2−1
; q) (t − 1)-(2t + 3, t, λ; q)

t-(2t + 4, t + 1, λ; q)

❄
res

❳❳❳❳❳❳❳❳③
der

(t − 1)-(2t + 4, t + 1, λ qt+5
−1

q2−1
; q)

✘✘✘✘✘✘✘✘✾
red

(t − 1)-(2t + 3, t + 2, λ
(qt+2

−1)(qt+3
−1)

(q2−1)(q3−1)
; q)

❅
❅❘
dual

t-(2t + 4, t + 2, λ
qt+3

−1

q2−1
; q)

�
�✒res

✻

der(t − 1)-(2t + 4, t + 2, λ
(qt+3

−1)(qt+5
−1)

(q2−1)(q3−1)
; q)

❅
❅■ red

t-(2t + 5, t + 2, λ
qt+5

−1

q2−1
; q)
�
�✒res

✻

der

(t − 1)-(2t + 5, t + 2, λ
(qt+5

−1)(qt+6
−1)

(q2−1)(q3−1)
; q)

❅
❅❘
red

(t − 1)-(2t + 5, t + 3, λ
(qt+3

−1)(qt+5
−1)(qt+6

−1)

(q2−1)(q3−1)(q3−1)
; q)✲dual

t-(2t + 6, t + 3, λ
(qt+5

−1)(qt+6
−1)

(q2−1)(q3−1)
; q)
�
�✒res

❅
❅■ der

(t − 1)-(2t + 6, t + 3, λ
(qt+5

−1)(qt+6
−1)(qt+7

−1)

(q2−1)(q3−1)(q4−1)
; q)

❄
red



(t − 1)-(2t + 3, t + 1, λ qt+3
−1

q2−1
; q) (t − 1)-(2t + 3, t, λ; q)

t-(2t + 4, t + 1, λ; q)

❄
res

❳❳❳❳❳❳❳❳③
der

(t − 1)-(2t + 4, t + 1, λ qt+5
−1

q2−1
; q)

✘✘✘✘✘✘✘✘✾
red

(t − 1)-(2t + 3, t + 2, λ
(qt+2

−1)(qt+3
−1)

(q2−1)(q3−1)
; q)

❅
❅❘
dual

t-(2t + 4, t + 2, λ
qt+3

−1

q2−1
; q)

�
�✒res

✻

der(t − 1)-(2t + 4, t + 2, λ
(qt+3

−1)(qt+5
−1)

(q2−1)(q3−1)
; q)

❅
❅■ red

t-(2t + 5, t + 2, λ
qt+5

−1

q2−1
; q)
�
�✒res

✻

der

(t − 1)-(2t + 5, t + 2, λ
(qt+5

−1)(qt+6
−1)

(q2−1)(q3−1)
; q)

❅
❅❘
red

(t − 1)-(2t + 5, t + 3, λ
(qt+3

−1)(qt+5
−1)(qt+6

−1)

(q2−1)(q3−1)(q3−1)
; q)✲dual

t-(2t + 6, t + 3, λ
(qt+5

−1)(qt+6
−1)

(q2−1)(q3−1)
; q)
�
�✒res

❅
❅■ der

(t − 1)-(2t + 6, t + 3, λ
(qt+5

−1)(qt+6
−1)(qt+7

−1)

(q2−1)(q3−1)(q4−1)
; q)

❄
red

computer
results
for t = 3
and q = 2

Corollary
There exist designs with parameters
2-(10, 4, 85λ; 2), 2-(10, 5, 765λ; 2),
2-(11, 5, 6205λ; 2), 2-(12, 6, 423181λ; 2)
for λ = 7, 12, 19, 21, 22, 24, 31, 36, 42, 43, 48, 49, 55, 60, 63
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Theorem (Itoh, 1998)

there is a family of 2-(nℓ, 3, q3 qn−5−1
q−1 ; q) designs

admitting SL(ℓ, qn) as group of automorphisms
for q ≥ 2, ℓ ≥ 3, n ≡ 5 mod 6(q − 1)

ζ
SL(ℓ,qn)
2,3 =




a

ζ
S(n,q)
2,3

. . . 0 0

a

0 X Y Z




2-(n, 3, λ; q) designs admitting S(n, q)
can be extended to
2-(nℓ, 3, λ; q) designs admitting SL(ℓ, qn)
if λ is appropriate
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extension possible if

λ = q(q + 1)(q3 − 1)s + q(q2 − 1)t

for some integer s ≥ 0, t ∈ {0, 1} if 3|n and t = 0 otherwise

for ℓ ≥ 3, n ≡ 5 mod 6(q − 1)
Suzuki’s supplemented design
has index value λ of required form
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q = 2: λ = 42s + 6t
q = 3: λ = 312s + 24t

computer constructions
of designs admitting S(n, q)
2-(8, 3, 21; 2)

supp
⇒ 2-(8, 3, 42; 2)

2-(9, 3, 42; 2)
2-(9, 3, 43; 2)

supp
⇒ 2-(9, 3, 84; 2)

2-(10, 3, 45; 2)
supp
⇒ 2-(10, 3, 210; 2)

2-(13, 3, 42s ; 2) for 1 ≤ s ≤ 25
2-(8, 3, 52; 3)

supp
⇒ 2-(8, 3, 312; 3)

Corollary
there exist families of designs
admitting SL(ℓ, qn) for ℓ ≥ 3
2-(8ℓ, 3, 42; 2)
2-(9ℓ, 3, 42s; 2) for 1 ≤ s ≤ 2
2-(10ℓ, 3, 210; 2)
2-(13ℓ, 3, 42s; 2) for 1 ≤ s ≤ 25
2-(8ℓ, 3, 312; 3)
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Sq(t, k , n) q-Steiner system
= t-(n, k , 1; q) design

Theorem
Sq(1, k , n) exists if and only if k divides n

trivial q-Steiner systems

existence of non-trivial
q-Steiner systems (t > 1)
was long-standing issue ...
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Theorem (B., Etzion, Österg̊ard, Vardy, Wassermann, 2012)
q-Steiner systems do exist

S2(2, 3, 13)

automorphism group N(13, 2)
of order 13 · (213−1) = 106483

consisting of 15 orbits
of full length 106483

taken out of 25572
possible orbits

≥ 1050 disjoint solutions
all non-isomorphic

solved with Knuth’s dancing links
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✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆
❆❆

r rrr
r

rr q-analog of the
Fano plane S(2, 3, 7)

it would have size 381

replacing “exactly”
by “at most”
yields q-packing
(subspace codes)

PPPPPq best known size is 329
(B., Reichelt, 2014)
(Liu, Honold, 2014)

large gap
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what if S2(2, 3, 7) does exist?
what is the automorphism group?

exclude groups step by step

consider only one subgroup
of each conjugacy class

r
{1}

rA = Aut(L(V ))

r
G

1) choose representative G

of some conjugacy class of A

2) solve ζGt,kx = [1, . . . , 1]t

s3) no solution ❅
❅

❅❅
✁
✁
✁

✟✟✟✟✟✟

⇒ subgroups S with
G ≤ S ≤ A

and their conjugacy classes
cannot occur as
groups of automorphisms



systematic elimination of
subgroups (p-groups first)
and conjugacy classes yields...



systematic elimination of
subgroups (p-groups first)
and conjugacy classes yields...

Theorem (B., Kiermaier, Nakić, 2014)
the automorphism group of S2(2, 3, 7) is either trivial or
generated by one of the following matrices



0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1







0 1 0 0 0 0 0

1 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1







0 1 0 0 0 0 0

1 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1







1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 0 0 0 1 1

0 0 0 0 0 0 1




order 2 order 3 order 3 order 4
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Theorem (B., Kohnert, Österg̊ard, Wassermann, 2014)
large sets LSq[N](t, k , n) for N > 2 do exist



we consider collections
of disjoint designs ...

an LSq[N](t, k , n) large set

is a partition of
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]
into N

disjoint t-(n, k ,
[
n−t
k−t

]
q
/N; q)

designs

N = 2: halving

t-(n, k ,
[
n−t
k−t

]
q
/2; q)

❄
supp

t-(n, k ,
[
n−t
k−t

]
q
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✟✟✟✯ LSq[2](t, k , n)

examples
LS3[2](2, 3, 6)
LS5[2](2, 3, 6)

Theorem (B., Kohnert, Österg̊ard, Wassermann, 2014)
large sets LSq[N](t, k , n) for N > 2 do exist

LS2[3](2, 3, 8)
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idea for recursive construction of large sets
– union and “joins” of (N, ∗)-partitionable sets
– are also (N, ∗)-partitionable
– decompose

[
V
k

]
into union of joins

– of (N, ∗)-partitionable sets
⇒
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V
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is (N, ∗)-partitionable ⇒ large set
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Lemma (B., Kiermaier, Kohnert, Laue, 2014)
1) S,T ⊆

[
V
k

]
(N, t)-partitionable, disjoint

1) ⇒ S ∪ T (N, t)-partitionable
2) S ⊆

[
V
k

]
(N, t)-partitionable, T ⊆

[
W
s

]
(N, r)-partitionable

2) ⇒ S ⋆ T (N, t + r +1)-partitionable

also valid for ⋆e and ⋆ẽ
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⇒ infinite series for N = 2 and q ∈ {3, 5}
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design
t-(n, k, λ; q)

(t−1, k−1)-spread
q-Steiner system
t-(n, k, 1; q)

(k−1)-spread
1-(n, k, 1; q)

spread
1-(n, 2, 1; q)

q-packing design
t-(n, k,≤λ; q)

constant dimension code
t-(n, k,≤1; q)

partial spread
1-(n, k,≤1; q)

arc = dual of
1-(n, n−1,≤λ; q)

multiset arc
= linear code

q-covering design
t-(n, k,≥λ; q)

= complement of
t-(n, k,≤

[

n−t
k−t

]

q
−λ; q)

blocking set = dual of
1-(n, n−1,≥λ; q)

large set
disjoint t-(n, k, λ; q)

(k−1)-parallelism
disjoint 1-(n, k, 1; q)

parallelism
disjoint 1-(n, 2, 1; q)

t-wise balanced design
t-(n,K , λ; q)

vector space partition
1-(n,K , 1; q)


