A survey on designs over finite fields Michael Braun University of Applied Sciences Darmstadt ## ALCOMA15 dedicated to our friend Axel Kohnert (1962-2013) recall results of the past 30 years recall results of the past 30 years focus on constructions recall results of the past 30 years focus on constructions computer results group actions recall results of the past 30 years focus on constructions provide list of known construtions computer results group actions recall results of the past 30 years focus on constructions provide list of known construtions computer results group actions describe some new results $$V$$ set of cardinality n $P(V)$ lattice of subsets of V $\binom{V}{k}$ set of k -subsets of V $\operatorname{Aut}(P(V)) \simeq \operatorname{Sym}(V)$ $Anti(P(V)) = \overline{\cdot} \circ Aut(P(V))$ $$\binom{n}{k}$$ binomial coefficient $$V$$ set of cardinality n V n -dimensional vector space over \mathbb{F}_q $P(V)$ lattice of subsets of V $L(V)$ lattice of subspaces of V $\binom{V}{k}$ set of k -subsets of V $\binom{N}{k}$ binomial coefficient $\binom{n}{k}_q q$ -binomial coefficent $Aut(P(V)) \simeq Sym(V)$ $Aut(L(V)) \simeq P\Gamma L(V)$ $Anti(P(V)) = \overline{\cdot} \circ Aut(P(V))$ $Anti(L(V)) = \cdot^{\perp} \circ Aut(L(V))$ $$V$$ set of cardinality n V n -dimensional vector space over \mathbb{F}_q $P(V)$ lattice of subsets of V $L(V)$ lattice of subspaces of V $\binom{V}{k}$ set of k -subsets of V $\binom{V}{k}$ set of k -subspaces of V $\binom{n}{k}$ binomial coefficient $\binom{n}{k}_q q$ -binomial coefficent $\operatorname{Aut}(P(V)) \simeq \operatorname{Sym}(V)$ $\operatorname{Aut}(L(V)) \simeq \operatorname{P}\Gamma L(V)$ $\operatorname{Anti}(P(V)) = \overline{\cdot} \circ \operatorname{Aut}(P(V))$ $\operatorname{Anti}(L(V)) = \cdot^{\perp} \circ \operatorname{Aut}(L(V))$ take any incidence structure on sets, replace sets by vector spaces, and cardinalities by dimensions $$(V, \mathcal{B})$$ is a t - (n, k, λ) design iff $V = \{1, \ldots, n\}, \mathcal{B} \subseteq \binom{V}{k}$ blocks $\forall T \in \binom{V}{t} : |\{B \in \mathcal{B} \mid T \subseteq B\}| = \lambda$ $$(V, \mathcal{B})$$ is a t - (n, k, λ) design iff $V = \{1, \ldots, n\}$, $\mathcal{B} \subseteq \binom{V}{k}$ blocks $\forall T \in \binom{V}{t} : |\{B \in \mathcal{B} \mid T \subseteq B\}| = \lambda$ \dots and consider its q-analog $$(V, \mathcal{B})$$ is a t - (n, k, λ) design iff $V = \{1, \ldots, n\}$, $\mathcal{B} \subseteq \binom{V}{k}$ blocks $\forall T \in \binom{V}{t} : |\{B \in \mathcal{B} \mid T \subseteq B\}| = \lambda$... and consider its q-analog $$(V, \mathcal{B})$$ is a t - $(n, k, \lambda; q)$ design iff $V \simeq \mathbb{F}_q^n$, $\mathcal{B} \subseteq {V \brack k}$ blocks $\forall T \in {V \brack t} : |\{B \in \mathcal{B} \mid T \subseteq B\}| = \lambda$ $$(V, \mathcal{B})$$ is a t - (n, k, λ) design iff $V = \{1, \dots, n\}$, $\mathcal{B} \subseteq \binom{V}{k}$ blocks $\forall T \in \binom{V}{t} : |\{B \in \mathcal{B} \mid T \subseteq B\}| = \lambda$... and consider its q-analog $$(V,\mathcal{B})$$ is a t - $(n,k,\lambda;q)$ design iff $V\simeq \mathbb{F}_q^n$, $\mathcal{B}\subseteq {V\brack k}$ blocks $\forall T\in {V\brack t}:|\{B\in\mathcal{B}\mid T\subseteq B\}|=\lambda$ number of blocks $|\mathcal{B}|=\lambda \frac{{n\brack t}_q}{{k\brack t}_q}$ $$(V, \mathcal{B})$$ is a t - (n, k, λ) design iff $V = \{1, \dots, n\}, \mathcal{B} \subseteq \binom{V}{k}$ blocks $\forall T \in \binom{V}{t} : |\{B \in \mathcal{B} \mid T \subseteq B\}| = \lambda$... and consider its q-analog $$(V, \mathcal{B})$$ is a t - $(n, k, \lambda; q)$ design iff $V \simeq \mathbb{F}_q^n$, $\mathcal{B} \subseteq {V \brack k}$ blocks $\forall T \in {V \brack t} : |\{B \in \mathcal{B} \mid T \subseteq B\}| = \lambda$ number of blocks $$|\mathcal{B}| = \lambda rac{igl[n]_q}{igl[k]_q}$$ trivial design $$\mathcal{B} = {V \brack k}$$ with $\lambda = {n-t \brack k-t}_q$ | B., Kerber, Laue, Systema Construction of q -Analogs Designs, 2005 | | | over GF(| 2 ^m), on | y-Chaudhuri, Schram, Designs
Vectorspaces Constructed
ing Quadratic Forms, 1992 | |--|--|---|---|--|---| | Thomas, Design
Geometries over
1996 | | Abe, Yoshiara, O
Construction of 2
over $GF(q)$, 199 | 2-Designs | | Family of 2-Designs dmitting $SL_m(q^\ell)$, | | Tits, Sur les Analogues
Algébriques des Groupes
Semi-Simples Complexes, 19 | On a Class o | lunemasa, Yoshiara,
f Small 2-Designs
1995 | Kiermaier, Laue,
and Residual Sub
Designs, 2014 | space Auto | ciermaier, Nakić, On the
morphism Group of a Binary
alog of the Fano Plane, 2015 | | Fazeli, Lovett, Vardy, Non-
trivial <i>t</i> -Designs over Finite
Fields Exist for All <i>t</i> , 2013 | | gård, Vardy, Wasser-
istence of <i>q</i> -Analogs
ns, 2013 | | t-Designs | Etzion, Vardy, On <i>q</i> -Analogs
of Steiner Systems and
Covering Designs, 2011 | | Nakić, Pavčević, Ta
Decompositions of
over Finite Fields, 2 | Designs Fishe | eron, Generalisation
r's Inequality to Field
than One Element, | ds with over t | ew 3-Designs
he Binary
2013 | Schwartz, Etzion, Codes
and Anticodes in the
Grassman Graph, 2002 | | Metsch, Bose-Burton
Theorems for Finite F
Affine and Polar Space | rojective, m | , Kohnert, Östergård
ann, Large Sets of <i>t</i>
ver Finite Fields, 201 | -Designs Nor | A Note on the
n-Simple Design
ds, 2012 | | | Cameron, Locally
Symmetric Designs,
1974 | B., Some Ne
Designs over
Finite Fields, | Existe | , Sissokho, On the
nce of a (2, 3)-Spre
7, 2), 2011 | ead Ine | zuki, On the
qualities of <i>t-</i> Designs
er a Finite Field, 1990 | | Kiermaier, Pavčević,
Intersection Numbers for
Subspace Designs, 2014 | B., q-Analogs of
Balanced Designs
Finite Fields, 201 | s over Laue, L | rmaier, Kohnert,
arge Sets of
ce Designs, 2014 | Delsarte, Asso
and t-Designs
Semilattices, | | | B., Kerber, Laue, Systemat
Construction of <i>q</i> -Analogs
Designs, 2005 | | gns Thomas, De
over Finite
Fields, 1987 | over GF | $(2^m),$ | Ray-Chaudhuri, Schram, Designs
on Vectorspaces Constructed
Using Quadratic Forms, 1992 | |--|---|--|---|--------------------------------------|--| | Thomas, Designs
Geometries over
1996 | | Abe, Yoshiara, Or
Construction of 2
over $GF(q)$, 1993 | -Designs | | w Family of 2-Designs
) Admitting $SL_m(q^\ell)$, | | Tits, Sur les Analogues
Algébriques des Groupes
Semi-Simples Complexes, 19 | On a Class of | nemasa, Yoshiara,
Small 2-Designs
995 | Kiermaier, Laue,
and Residual Sub
Designs, 2014 | space A | ., Kiermaier, Nakić, On the
utomorphism Group of a Binary
Analog of the Fano Plane, 2015 | | Fazeli, Lovett, Vardy, Non-
trivial <i>t</i> -Designs over Finite
Fields Exist for All <i>t</i> , 2013 | B., Etzion, Östergå
mann, On the Exist
of Steiner Systems, | tence of <i>q</i> -Analogs | | t-Designs | Etzion, Vardy, On <i>q</i> -Analogs of Steiner Systems and Covering Designs, 2011 | | Nakić, Pavčević, Ta
Decompositions of I
over Finite Fields, 2 | Designs Fisher's | on, Generalisation of
Inequality to Field
nan One Element, | ls with over | ew 3-Designs
the Binary
, 2013 | s Schwartz, Etzion, Codes
and Anticodes in the
Grassman Graph, 2002 | | Metsch, Bose-Burton
Theorems for Finite P
Affine and Polar Spac | rojective, man | Kohnert, Östergård
nn, Large Sets of <i>t-</i>
r Finite Fields, 2014 | Designs No | | he Existence of
signs over Finite | | Cameron, Locally
Symmetric Designs,
1974 | B., Some New
Designs over
Finite Fields, 2 | Exister | , Sissokho, On the nce of a $(2,3)$ -Spr $(2,2)$, $(2,3)$ -Spr $(2,2)$ | ead | Suzuki, On the Inequalities of <i>t</i> -Designs over a Finite Field, 1990 | | Kiermaier, Pavčević,
Intersection Numbers for
Subspace Designs, 2014 | B., q-Analogs of t-
Balanced Designs of
Finite Fields, 2014 | over Laue, L | rmaier, Kohnert,
arge Sets of
te Designs, 2014 | | Association Schemes
gns in Regular
es, 1976 | | Construction of q -Analogs of | over $GF(q)$, | over Finite | over $GF(2^m)$, | on Vectorspaces Constructed | |--|----------------|--|--|--| | Designs, 2005 | 1992 | Fields, 1987 | 1990 | Using Quadratic Forms, 1992 | | Thomas, Designs ar
Geometries over Fir
1996 | | Abe, Yoshiara, On So
Construction of 2-De
over $GF(q)$, 1993 | | A New Family of 2-Designs $GF(q)$ Admitting $SL_m(q^{\ell})$, | | Tits, Sur les Analogues
Algébriques des Groupes
Semi-Simples Complexes, 1957 | On a Class of | Small 2-Designs and | ermaier, Laue, Derived
d Residual Subspace
signs, 2014 | B., Kiermaier, Nakić,
On the Automorphism Group of a Binary q-Analog of the Fano Plane, 2015 | | trivial t-Designs over Finite ma | | stence of q-Analogs | Ray-Chaudhuri, Singhi
g-Analogues of <i>t-</i> Desi
and Their Existence, 1 | gns of Steiner Systems and | | Nakić, Pavčević, Tactic
Decompositions of Des
over Finite Fields, 2013 | signs Fisher' | on, Generalisation of
's Inequality to Fields w
han One Element, 197 | | | | Metsch, Bose-Burton Typ
Theorems for Finite Projection | | Kohnert, Östergård, W | | e on the Existence of
le Designs over Finite | over Finite Fields, 2014 Thomas, Designs Suzuki, 2-Designs Fields, 2012 1974 Kiermaier, Pavčević, Intersection Numbers for Subspace Designs, 2014 Cameron, Locally Symmetric Designs, Affine and Polar Spaces, 1999 B., Kerber, Laue, Systematic B., *q*-Analogs of *t*-Wise Balanced Designs over Finite Fields, 2014 B.. Some New Finite Fields, 2005 Designs over Suzuki, 2-Designs Heden, Sissokho, On the Existence of a (2, 3)-Spread in V(7, 2), 2011 B., Kiermaier, Kohnert, Laue, Large Sets of Subspace Designs, 2014 Delsarte, Association Schemes and t-Designs in Regular Semilattices, 1976 Suzuki. On the Inequalities of t-Designs over a Finite Field, 1990 Rav-Chaudhuri, Schram, Designs | B., Kerber, Laue, Systema Construction of q -Analogs Designs, 2005 | |), over | mas, Designs
Finite
ds, 1987 | Suzuki, 2-
over <i>GF</i> (2
1990 | | Ray-Chaudhuri, Schram, Designs
on Vectorspaces Constructed
Using Quadratic Forms, 1992 | |--|--|--|---|---|--------------------------------|--| | Thomas, Design
Geometries over
1996 | | | niara, On Suzuki'
ion of 2-Designs
q), 1993 | | | ew Family of 2-Designs q) Admitting $SL_m(q^\ell)$, | | Tits, Sur les Analogues
Algébriques des Groupes
Semi-Simples Complexes, 19 | On a Class | Munemasa, Yos
s of Small 2-Des
), 1995 | | er, Laue, D
idual Subsp
, 2014 | pace A | 3., Kiermaier, Nakić, On the
Automorphism Group of a Binary
g-Analog of the Fano Plane, 2015 | | Fazeli, Lovett, Vardy, Non-
trivial <i>t</i> -Designs over Finite
Fields Exist for All <i>t</i> , 2013 | | ergård, Vardy, \
Existence of <i>q-l</i>
ems, 2013 | Analogs <i>q</i> -Åna | haudhuri, sologues of their Existe | -Designs | Etzion, Vardy, On <i>q</i> -Analogs of Steiner Systems and Covering Designs, 2011 | | Nakić, Pavčević, Ta
Decompositions of
over Finite Fields, 2 | Designs Fis | meron, Generali
her's Inequality
ire than One Ele | to Fields with | | w 3-Design
e Binary
2013 | ns Schwartz, Etzion, Codes
and Anticodes in the
Grassman Graph, 2002 | | Metsch, Bose-Burton
Theorems for Finite F
Affine and Polar Space | Projective, | | stergård, Wasser
ets of <i>t-</i> Designs
lds, 2014 | Non- | | the Existence of esigns over Finite | | Cameron, Locally
Symmetric Designs,
1974 | B., Some
Designs ov
Finite Fiel | er | Heden, Sissokho
Existence of a (
in $V(7, 2)$, 201 | (2, 3)-Sprea | ad | Suzuki, On the Inequalities of <i>t</i> -Designs over a Finite Field, 1990 | | Kiermaier, Pavčević,
Intersection Numbers for
Subspace Designs, 2014 | B., q-Analogs
Balanced Designite Finite Fields, 2 | gns over | B., Kiermaier, K
Laue, Large Sets
Subspace Design | of | | Association Schemes
signs in Regular
ces, 1976 | B., Kerber, Laue, Systematic Construction of *q*-Analogs of Designs, 2005 Suzuki, 2-Designs over *GF*(q), 1992 Thomas, Designs over Finite Fields, 1987 Suzuki, 2-Designs over *GF*(2^m), 1990 Ray-Chaudhuri, Schram, Designs on Vectorspaces Constructed Using Quadratic Forms, 1992 Thomas, Designs and Partial Geometries over Finite Fields, 1996 Abe, Yoshiara, On Suzuki's Construction of 2-Designs over GF(q), 1993 Itoh, A New Family of 2-Designs over GF(q) Admitting $SL_m(q^\ell)$, 1998 Tits, Sur les Analogues Algébriques des Groupes Semi-Simples Complexes, 1957 Miyakawa, Munemasa, Yoshiara, On a Class of Small 2-Designs over GF(q), 1995 B., Etzion, Östergård, Vardy, Wasser- Designs, 2014 Ray-Chaudhuri, Singhi, Kiermaier, Laue, Derived and Residual Subspace B., Kiermaier, Nakić, On the Automorphism Group of a Binary *q*-Analog of the Fano Plane, 2015 Fazeli, Lovett, Vardy, Nontrivial *t*-Designs over Finite Fields Exist for All *t*, 2013 mann, On the Existence of *q*-Analogs of Steiner Systems, 2013 ctical Cameron, Generalisation of q-Analogues of t-Designs and Their Existence, 1989 Etzion, Vardy, On *q*-Analogs of Steiner Systems and Covering Designs, 2011 Nakić, Pavčević, Tactical Decompositions of Designs over Finite Fields, 2013 Fisher's Inequality to Fields with more than One Element, 1974 B., New 3-Designs over the Binary Field, 2013 Schwartz, Etzion, Codes and Anticodes in the Grassman Graph, 2002 Metsch, Bose-Burton Type Theorems for Finite Projective, Affine and Polar Spaces, 1999 B., Kohnert, Östergård, Wassermann, Large Sets of *t*-Designs over Finite Fields, 2014 B., A Note on the Existence of Non-Simple Designs over Finite Fields, 2012 Cameron, Locally Symmetric Designs, 1974 B., Some New Designs over Finite Fields, 2005 Heden, Sissokho, On the Existence of a (2, 3)-Spread in V(7, 2), 2011 Suzuki, On the Inequalities of *t*-Designs over a Finite Field, 1990 Kiermaier, Pavčević, Intersection Numbers for Subspace Designs, 2014 B., *q*-Analogs of *t*-Wise Balanced Designs over Finite Fields, 2014 B., Kiermaier, Kohnert, Laue, Large Sets of Subspace Designs, 2014 Delsarte, Association Schemes and t-Designs in Regular Semilattices, 1976 B., Kerber, Laue, Systematic Construction of a-Analogs of Designs, 2005 Suzuki, 2-Designs over GF(a). 1992 Thomas, Designs over Finite Fields, 1987 Suzuki, 2-Designs over $GF(2^m)$. 1990 Ray-Chaudhuri, Schram, Designs on Vectorspaces Constructed Using Quadratic Forms, 1992 Thomas, Designs and Partial Geometries over Finite Fields. 1996 Abe, Yoshiara, On Suzuki's Construction of 2-Designs over GF(a), 1993 Itoh, A New Family of 2-Designs over GF(q) Admitting $SL_m(q^{\ell})$. 1998 Tits, Sur les Analogues Algébriques des Groupes Semi-Simples Complexes, 1957 Miyakawa, Munemasa, Yoshiara, On a Class of Small 2-Designs over GF(a), 1995 B., Etzion, Östergård, Vardy, Wasser- mann, On the Existence of q-Analogs Designs, 2014 Ray-Chaudhuri, Singhi, a-Analogues of t-Designs and Their Existence, 1989 Kiermaier, Laue, Derived and Residual Subspace Automorphism Group of a Binary a-Analog of the Fano Plane, 2015 Etzion, Vardy, On q-Analogs of Steiner Systems and Covering Designs, 2011 B., Kiermaier, Nakić, On the Fazeli, Lovett, Vardy, Nontrivial t-Designs over Finite Fields Exist for All t. 2013 of Steiner Systems, 2013 Cameron. Generalisation of Fisher's Inequality to Fields with more than One Element, 1974 B., New 3-Designs over the Binary Field, 2013 Schwartz, Etzion, Codes and Anticodes in the Grassman Graph, 2002 Metsch, Bose-Burton Type Theorems for Finite Projective, Affine and Polar Spaces, 1999 Nakić, Pavčević, Tactical over Finite Fields, 2013 Decompositions of Designs B., Kohnert, Östergård, Wassermann, Large Sets of t-Designs over Finite Fields, 2014 B., A Note on the Existence of Non-Simple Designs over Finite Fields, 2012 Cameron, Locally Symmetric Designs, 1974 B., Some New Designs over Finite Fields, 2005 Heden, Sissokho, On the Existence of a (2, 3)-Spread in V(7, 2), 2011 Suzuki. On the Inequalities of t-Designs over a Finite Field, 1990 Kiermaier, Pavčević, Intersection Numbers for Subspace Designs, 2014 B., q-Analogs of t-Wise Balanced Designs over Finite Fields, 2014 B., Kiermaier, Kohnert, Laue, Large Sets of Subspace Designs, 2014 Delsarte, Association Schemes and t-Designs in Regular Semilattices, 1976 B., Kerber, Laue, Systematic Construction of *q*-Analogs of Designs, 2005 Suzuki, 2-Designs over GF(q), 1992 Thomas, Designs over Finite Fields, 1987 Suzuki, 2-Designs over $GF(2^m)$, 1990 Ray-Chaudhuri, Schram, Designs on Vectorspaces Constructed Using Quadratic Forms, 1992 Thomas, Designs and Partial Geometries over Finite Fields, 1996 Abe, Yoshiara, On Suzuki's Construction of 2-Designs over GF(q), 1993 Itoh, A New Family of 2-Designs over GF(q) Admitting $SL_m(q^\ell)$, 1998 Tits, Sur les Analogues Algébriques des Groupes Semi-Simples Complexes, 1957 Miyakawa, Munemasa, Yoshiara, On a Class of Small 2-Designs over GF(q), 1995 B., Etzion, Östergård, Vardy, Wasser- Kiermaier, Laue, Derived and Residual Subspace Designs, 2014 B., Kiermaier, Nakić, On the Automorphism Group of a Binary *q*-Analog of the Fano Plane, 2015 Fazeli, Lovett, Vardy, Nontrivial *t*-Designs over Finite Fields Exist for All *t*, 2013 mann, On the Existence of *q*-Analogs of Steiner Systems, 2013 ctical Cameron, Generalisation of Ray-Chaudhuri, Singhi, q-Analogues of t-Designs and Their Existence, 1989 Etzion, Vardy, On *q*-Analogs of Steiner Systems and Covering Designs, 2011 Nakić, Pavčević, Tactical Decompositions of Designs over Finite Fields, 2013 Fisher's Inequality to Fields with more than One Element, 1974 B., New 3-Designs over the Binary Field, 2013 Schwartz, Etzion, Codes and Anticodes in the Grassman Graph, 2002 Metsch, Bose-Burton Type Theorems for Finite Projective, Affine and Polar Spaces, 1999 B., Kohnert, Östergård, Wassermann, Large Sets of *t*-Designs over Finite Fields, 2014 B., A Note on the Existence of Non-Simple Designs over Finite Fields, 2012 Cameron, Locally Symmetric Designs, 1974 B., Some New Designs over Finite Fields, 2005 Heden, Sissokho, On the Existence of a (2, 3)-Spread in V(7, 2), 2011 Suzuki, On the Inequalities of *t*-Designs over a Finite Field, 1990 Kiermaier, Pavčević,
Intersection Numbers for Subspace Designs, 2014 B., *q*-Analogs of *t*-Wise Balanced Designs over Finite Fields, 2014 B., Kiermaier, Kohnert, Laue, Large Sets of Subspace Designs, 2014 Delsarte, Association Schemes and *t*-Designs in Regular Semilattices, 1976 | B., Kerber, Laue, Systema
Construction of <i>q</i> -Analogs
Designs, 2005 | | q), c | Thomas, De
over Finite
Fields, 1987 | J | Suzuki, 2-
over <i>GF</i> (2
1990 | | Ray-Chaudhuri, So
on Vectorspaces C
Using Quadratic F | onstructed | |--|---|---|---|-----------------------------------|--|--------------------------------|---|---------------| | Thomas, Design
Geometries over
1996 | | Constr | Yoshiara, Or
ruction of 2
GF(q), 1993 | -Designs | | | lew Family of 2-Design q) Admitting $SL_m(q)$ | | | Tits, Sur les Analogues
Algébriques des Groupes
Semi-Simples Complexes, 19 | On a Clas | a, Munemasa,
ss of Small 2-
q), 1995 | | | er, Laue, E
sidual Subs
, 2014 | pace . | B., Kiermaier, Nakić
Automorphism Group
q-Analog of the Fan | p of a Binary | | Fazeli, Lovett, Vardy, Non-
trivial <i>t</i> -Designs over Finite
Fields Exist for All <i>t</i> , 2013 | B., Etzion, Ös
mann, On the
of Steiner Sys | Existence of | | q-Āna | Chaudhuri,
alogues of
Their Existe | t-Designs | Etzion, Vardy, C
of Steiner Syster
Covering Design | ns and | | Nakić, Pavčević, Ta
Decompositions of
over Finite Fields, 2 | Designs Fi | ameron, Gene
sher's Inequa
ore than One | lity to Field | s with | | w 3-Desig
ne Binary
2013 | ns Schwartz, Et.
and Anticode
Grassman Gr | s in the | | Metsch, Bose-Burton
Theorems for Finite F
Affine and Polar Spac | Projective, | B., Kohnert
mann, Largo
over Finite | e Sets of t- | Designs | Non- | | the Existence of esigns over Finite | | | Cameron, Locally
Symmetric Designs,
1974 | B., Some
Designs o
Finite Fie | over | Existen | | o, On the
(2, 3)-Sprea
1 | ad | Suzuki, On the Inequalities of <i>t</i> -D over a Finite Field | | | Kiermaier, Pavčević,
Intersection Numbers for
Subspace Designs, 2014 | B., <i>q</i> -Analogs
Balanced Des
Finite Fields, | igns over | | maier, K
arge Sets
e Design | s of | and t-De | Association Scheme
signs in Regular
ces, 1976 | es | | B., Kerber, Laue, Systemat
Construction of <i>q</i> -Analogs
Designs, 2005 | | | e over | ıki, 2-Designs
<i>GF</i> (2 ^m), | Ray-Chaudhuri, Schram, Designs
on Vectorspaces Constructed
Using Quadratic Forms, 1992 | |--|---|---|--|---|---| | Thomas, Designs
Geometries over
1996 | | Abe, Yoshiara, Construction of over $GF(q)$, 19 | 2-Designs | | ew Family of 2-Designs $SL_m(q^\ell)$, | | Tits, Sur les Analogues
Algébriques des Groupes
Semi-Simples Complexes, 19 | On a Class | Munemasa, Yoshiara
of Small 2-Designs
, 1995 | , Kiermaier, La
and Residual
Designs, 2014 | Subspace A | 3., Kiermaier, Nakić, On the
automorphism Group of a Binary
-Analog of the Fano Plane, 2015 | | Fazeli, Lovett, Vardy, Non-
trivial <i>t</i> -Designs over Finite
Fields Exist for All <i>t</i> , 2013 | | ergård, Vardy, Wasse
existence of <i>q</i> -Analog
ms, 2013 | gs <i>q</i> -Ånalogue | huri, Singhi,
es of <i>t</i> -Designs
Existence, 1989 | Etzion, Vardy, On <i>q</i> -Analogs
of Steiner Systems and
Covering Designs, 2011 | | Nakić, Pavčević, Ta
Decompositions of I
over Finite Fields, 2 | Designs Fish | neron, Generalisatior
er's Inequality to Fie
e than One Element | elds with ov | 3., New 3-Design
ver the Binary
ïeld, 2013 | s Schwartz, Etzion, Codes
and Anticodes in the
Grassman Graph, 2002 | | Metsch, Bose-Burton
Theorems for Finite P
Affine and Polar Spac | rojective, r | 3., Kohnert, Östergå
nann, Large Sets of
over Finite Fields, 20 | t-Designs | | the Existence of signs over Finite | | Cameron, Locally
Symmetric Designs,
1974 | B., Some N
Designs ove
Finite Field | er Exist | en, Sissokho, On
sence of a (2, 3)-
(7, 2), 2011 | | Suzuki, On the
Inequalities of <i>t</i> -Designs
over a Finite Field, 1990 | | Kiermaier, Pavčević,
Intersection Numbers for
Subspace Designs, 2014 | B., q-Analogs o
Balanced Design
Finite Fields, 20 | ns over Laue, | iermaier, Kohner
Large Sets of
Jace Designs, 201 | and t-Des | Association Schemes
signs in Regular
ses, 1976 | ns | Designs, 2005 | 1992 | Fields, 1987 | 1990 | , | Using Quadratic Forms, 1992 | |--|--|---|---|------------------------------------|---| | Thomas, Design
Geometries ove
1996 | | Abe, Yoshiara, On Construction of 2-over $GF(q)$, 1993 | -Designs | | w Family of 2-Designs
) Admitting $SL_m(q^\ell)$, | | Tits, Sur les Analogues
Algébriques des Groupes
Semi-Simples Complexes, 1 | On a Class of | Small 2-Designs | Kiermaier, Laue,
and Residual Sub
Designs, 2014 | space A | , Kiermaier, Nakić, On the
utomorphism Group of a Binary
Analog of the Fano Plane, 2015 | | Fazeli, Lovett, Vardy, Nontrivial t -Designs over Finite Fields Exist for All t , 2013 | | ard, Vardy, Wasser-
tence of <i>q</i> -Analogs
, 2013 | Ray-Chaudhuri
q-Analogues of
and Their Exist | t-Designs | Etzion, Vardy, On <i>q</i> -Analogs of Steiner Systems and Covering Designs, 2011 | | Nakić, Pavčević, T
Decompositions of
over Finite Fields, | Designs Fisher's | on, Generalisation o
s Inequality to Field:
han One Element, 1 | s with over | ew 3-Designs
the Binary
2013 | Schwartz, Etzion, Codes
and Anticodes in the
Grassman Graph, 2002 | | Metsch, Bose-Burtor
Theorems for Finite
Affine and Polar Spa | Projective, mar | Kohnert, Östergård,
nn, Large Sets of <i>t-</i> I
r Finite Fields, 2014 | Designs No | | he Existence of
signs over Finite | | Cameron, Locally
Symmetric Designs,
1974 | B., Some New
Designs over
Finite Fields, 2 | Existen | Sissokho, On the
ce of a (2, 3)-Spr
, 2), 2011 | ead | Suzuki, On the Inequalities of <i>t</i> -Designs over a Finite Field, 1990 | | Kiermaier, Pavčević,
Intersection Numbers for
Subspace Designs, 2014 | B., <i>q</i> -Analogs of <i>t</i> -Balanced Designs of Finite Fields, 2014 | over Laue, La | maier, Kohnert,
arge Sets of
e Designs, 2014 | | Association Schemes
Igns in Regular
es, 1976 | Thomas, Designs over Finite Suzuki, 2-Designs over $GF(2^m)$, Ray-Chaudhuri, Schram, Designs on Vectorspaces Constructed B., Kerber, Laue, Systematic Construction of q-Analogs of Suzuki, 2-Designs over GF(q), | B., Kerber, Laue, Systemat
Construction of <i>q</i> -Analogs
Designs, 2005 | | gns Thomas, De
over Finite
Fields, 1987 | over GF | 2-Designs F(2 ^m), | Ray-Chaudhuri, Schram, Designs
on Vectorspaces Constructed
Using Quadratic Forms, 1992 | |--|---|--|--|---------------------------------------|--| | Thomas, Designs
Geometries over
1996 | | Abe, Yoshiara, Or
Construction of 2
over $GF(q)$, 1993 | -Designs | | ew Family of 2-Designs q) Admitting $SL_m(q^\ell)$, | | Tits, Sur les Analogues
Algébriques des Groupes
Semi-Simples Complexes, 19 | On a Class of | nemasa, Yoshiara,
Small 2-Designs
995 | Kiermaier, Laue
and Residual Su
Designs, 2014 | bspace A | 3., Kiermaier, Nakić, On the
Automorphism Group of a Binary
g-Analog of the Fano Plane, 2015 | | Fazeli, Lovett, Vardy, Non-
trivial <i>t</i> -Designs over Finite
Fields Exist for All <i>t</i> , 2013 | B., Etzion, Östergå
mann, On the Exis
of Steiner Systems | tence of <i>q</i> -Analogs | | of t-Designs | Etzion, Vardy, On <i>q</i> -Analogs
of Steiner Systems and
Covering Designs, 2011 | | Nakić, Pavčević, Ta
Decompositions of I
over Finite Fields, 2 | Designs Fisher's | on, Generalisation of
Inequality to Field
nan One Element, I | ls with over | New 3-Design
the Binary
d, 2013 | ns Schwartz, Etzion, Codes
and Anticodes in the
Grassman Graph, 2002 | | Metsch, Bose-Burton
Theorems for Finite P
Affine and Polar Spac | rojective, mar | Kohnert, Östergård
nn, Large Sets of <i>t-</i>
Finite Fields, 2014 | Designs No | | the Existence of esigns over Finite | | Cameron, Locally
Symmetric Designs,
1974 | B., Some New
Designs over
Finite Fields, 2 | Exister | , Sissokho, On th
nce of a (2, 3)-Sp
(, 2), 2011 | | Suzuki, On the
Inequalities of <i>t</i> -Designs over a Finite Field, 1990 | | Kiermaier, Pavčević,
Intersection Numbers for
Subspace Designs, 2014 | B., q-Analogs of t-
Balanced Designs of
Finite Fields, 2014 | over Laue, L | maier, Kohnert,
arge Sets of
te Designs, 2014 | | Association Schemes
signs in Regular
ces, 1976 | B., Kerber, Laue, Systematic Construction of *q*-Analogs of Designs, 2005 Suz over 199 Suzuki, 2-Designs over GF(q), 1992 Thomas, Designs over Finite Fields, 1987 Suzuki, 2-Designs over $GF(2^m)$, 1990 Ray-Chaudhuri, Schram, Designs on Vectorspaces Constructed Using Quadratic Forms, 1992 Thomas, Designs and Partial Geometries over Finite Fields, 1996 Abe, Yoshiara, On Suzuki's Construction of 2-Designs over GF(q), 1993 Itoh, A New Family of 2-Designs over GF(q) Admitting $SL_m(q^\ell)$, 1998 Tits, Sur les Analogues Algébriques des Groupes Semi-Simples Complexes, 1957 Miyakawa, Munemasa, Yoshiara, On a Class of Small 2-Designs over GF(q), 1995 B., Etzion, Östergård, Vardy, Wasser- and Residual Subspace Designs, 2014 Ray-Chaudhuri, Singhi, Kiermaier, Laue, Derived B., Kiermaier, Nakić, On the Automorphism Group of a Binary q-Analog of the Fano Plane, 2015 Fazeli, Lovett, Vardy, Nontrivial *t*-Designs over Finite Fields Exist for All *t*, 2013 mann, On the Existence of q-Analogs of Steiner Systems, 2013 Cameron. Generalisation of q-Analogues of t-Designs and Their Existence, 1989 Etzion, Vardy, On *q*-Analogs of Steiner Systems and Covering Designs, 2011 Nakić, Pavčević, Tactical Decompositions of Designs over Finite Fields, 2013 Fisher's Inequality to Fields with more than One Element, 1974 B., New 3-Designs over the Binary Field, 2013 Schwartz, Etzion, Codes and Anticodes in the Grassman Graph, 2002 Metsch, Bose-Burton Type Theorems for Finite Projective, Affine and Polar Spaces, 1999 B., Kohnert, Östergård, Wassermann, Large Sets of *t*-Designs over Finite Fields, 2014 B., A Note on the Existence of Non-Simple Designs over Finite Fields, 2012 Cameron, Locally Symmetric Designs, 1974 B., Some New Designs over Finite Fields, 2005 Heden, Sissokho, On the Existence of a (2, 3)-Spread in V(7, 2), 2011 Suzuki, On the Inequalities of *t*-Designs over a Finite Field, 1990 Kiermaier, Pavčević, Intersection Numbers for Subspace Designs, 2014 B., q-Analogs of t-Wise Balanced Designs over Finite Fields, 2014 B., Kiermaier, Kohnert, Laue, Large Sets of Subspace Designs, 2014 Delsarte, Association Schemes and *t*-Designs in Regular Semilattices, 1976 a first example ... 1-(4,2,3;2) a first example \dots 1-(4, 2, 3; 2) | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ | 1 0 | $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ | 1 0 | $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ | 1 0 | $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ | 0 1 | $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ | 0 | |--|-------------|---|-------------|---|---|---|--|---|--| | | 0 | $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ | 0 | $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ | 0
0 | | 0 0 | $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ | 0
0 | | $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ | 0
1
0 | $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ | 0
0
1 | $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ | $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ | $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ | 0
0
1 | $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ | 0
0
0
1 | | | 0] | [0 | 0] | [1 | 0] | [1 | 0] | _1 | | | $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | 0 | $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ | 0 | $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ | $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ | $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ | $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ | $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ | | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | $\lceil 1 \rceil$ | 1] | $\lceil 1$ | 1] | $\lceil 1$ | 1 | $\lceil 1$ | 0] | $\lceil 1$ | 0] | |--|----|-------------|----|------------|----|------------|----|------------|----------| | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | $1 \mid$ | | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | | 0 | 0] | [1 | 0] | [1 | 0] | 0 | 0] | _1 | 0] | | Γ0 | 0 | Γ1 | 0 | $\lceil 1$ | [0 | Γ0 | 0 | [1 | 0 | | $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | | | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | $\lfloor 1$ | 0] | 0 | 0] | [1 | 0] | _1 | 0] | _1 | 1 | | Γ1 | 0 | Γο | 0 | $\lceil 1$ | 17 | Γ1 | 1 | [0 | 1] | | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | $1 \mid$ | | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | $\lfloor 1$ | 1 | Lo | 1 | 0 | 1 | 0 | 1 | verification is quite uncomfortable ... \ldots but the incidence matrix makes it easy | 0001,0111 | |---| | 0
0
1
1
0
1
1 | | 0
0
1
1
1
0
1 | | 0
0
1
0
0
1
1
1 | | 0
0
1
0
1
0
1
1 | | 0
0
1
0
1
1
1
0 | | 0
1
0
0
0
0
1
1
1 | | 0
1
0
1
1
0
1 | | 0
1
0
0
1
1
1
0 | | 1
0
0
1
0
1
1 | | 1000 | | 1000,1110 | | 1
1
1
0
0
1
1 | | 1
1
1
0
1
0
1 | | 1
1
1
0
1
1
0 | ... but the incidence matrix makes it easy | 1000
0100
0010
0001
1100
1010
1001
0110
0011
1110
1101
1011
0111
1111 | | |--|---| | | 0
0
0
1
0
1
1
1 | | | 0
0
0
1
1
0
1
1 | | | 0
0
1
1
1
0
1 | | | 0
0
1
0
0
1
1
1 | | | 0
0
1
0
1
0
1
1 | | | 0
0
1
0
1
1
1
0 | | | 0
1
0
0
0
0
1
1
1 | | | 0
1
0
0
1
1
0
1 | | | 0
1
0
0
1
1
1
0 | | | 1000,1011 | | | 1
0
0
0
1
1
0
1 | | | 1
0
0
0
1
1
1
0 | | | 1
1
1
0
0
1
1 | | | 1
1
1
0
1
0
1 | | | 1
1
1
1
0
1
1
0 | ... but the incidence matrix makes it easy | 1
1
1
0
1
1
0 | 1
1 | 1 | |---|--|--------------| | 1
1
1
0
1
0
1 | 1 | 1 | | 1
1
1
0
0
1
1 | 1 | 1 | | 1
0
0
0
1
1
1
0 | 1 | 1 | | 1
0
0
0
1
1
0
1 | 1 1 | | | 1
0
0
0
1
0
1
1 | 1 1 1 | | | 0
1
0
0
,
1
1
1
0 | 1 | 1 | | 0
1
0
0
1
1
0
1 | 1 1 1 | | | 0
1
0
0
0
1
1
1 | 1 1 | | | 0
0
1
0
1
1
1
0 | 1 | 1 | | 0
0
1
0
1
0
1
1 | 1 1 1 | | | 0
0
1
0
0
1
1
1 | 1 1 1 | | | 0
0
0
1
1
1
0
1 | 1 1 | | | 0
0
1
1
0
1
1 | 1
1
1 | | | 0001,01111 | 1 1 | | | | 1000
0100
0010
0001
1100
1010
1001
0110
0011
1110
1101 | 0111
1111 | ... but the incidence matrix makes it easy row sum is $\lambda = 3$ for all rows now, group actions come into play \dots extend action of $A = \operatorname{Aut}(L(V))$ to subsets of L(V) by $g\mathcal{B} := \{gB \mid B \in \mathcal{B}\}$ extend action of A = Aut(L(V))to subsets of L(V) by isomorphism class of ${\cal B}$ $$g\mathcal{B} := \{gB \mid B \in \mathcal{B}\}$$ $A(\mathcal{B}) := \{ g\mathcal{B} \mid g \in A \}$ extend action of A = Aut(L(V))to subsets of L(V) by $g\mathcal{B} := \{gB \mid B \in \mathcal{B}\}$ isomorphism class of ${\cal B}$ $$f \mathcal{B}$$ $\hat{=}$ orbit $A(\mathcal{B}) := \{ g\mathcal{B} \mid g \in A \}$ automorphism group of $$\mathcal{B}$$ $\widehat{=}$ stabilizer $A_{\mathcal{B}} := \{ g \in A \mid g\mathcal{B} = \mathcal{B} \}$ to subsets of $$L(V)$$ by $g\mathcal{B} := \{gB \mid B \in \mathcal{B}\}$ isomorphism class of ${\cal B}$ $\hat{=}$ orbit $$A(\mathcal{B}) := \{g\mathcal{B} \mid g \in A\}$$ **Orbit-Stabilizer-Theorem** $A(\mathcal{B}) \rightarrow A/A_{\mathcal{B}}$ $$A(\mathcal{B}) \rightarrowtail A/A_{\mathcal{B}}$$ $A_{g\mathcal{B}} = gA_{\mathcal{B}}g^{-1}$ $G = A_B = A_{gB} \Rightarrow g \in N_A(G)$ extend action of A = Aut(L(V)) automorphism group of \mathcal{B} $A_{\mathcal{B}} := \{ g \in A \mid g\mathcal{B} = \mathcal{B} \}$ isomorphism class of $$\mathcal{B}$$ $\widehat{=}$ orbit $A(\mathcal{B}) := \{ g\mathcal{B} \mid g \in A \}$ Orbit-Stabilizer-Theorem $$A(\mathcal{B}) \rightarrowtail A/A_{\mathcal{B}}$$ $$A_{gB} = gA_{B}g^{-1}$$ $$G = A_{B} = A_{gB} \Rightarrow g \in N_{A}(G)$$ ⇒ candidates for possible automorphism groups can be reduced to different conjugacy classes extend action of $A = \operatorname{Aut}(L(V))$ to subsets of L(V) by $g\mathcal{B} := \{g\mathcal{B} \mid \mathcal{B} \in \mathcal{B}\}$ automorphism group of \mathcal{B} $\widehat{=}$ stabilizer $A_{\mathcal{B}} := \{ g \in A \mid g\mathcal{B} = \mathcal{B} \}$ isomorphism class of \mathcal{B} $\widehat{=}$ orbit $A(\mathcal{B}) := \{g\mathcal{B} \mid g \in A\}$ ### Orbit-Stabilizer-Theorem $$A(\mathcal{B}) \rightarrowtail A/A_{\mathcal{B}}$$ $$A_{g\mathcal{B}} = gA_{\mathcal{B}}g^{-1}$$ $$G = A_{\mathcal{B}} = A_{g\mathcal{B}} \Rightarrow g \in N_{\mathcal{A}}(G)$$ ⇒ candidates for possible automorphism groups can be reduced to different conjugacy classes extend action of $A = \operatorname{\mathsf{Aut}}(L(V))$ to subsets of L(V) by $g\mathcal{B} := \{gB \mid B \in \mathcal{B}\}$
automorphism group of \mathcal{B} $\widehat{=}$ stabilizer $A_{\mathcal{B}} := \{g \in A \mid g\mathcal{B} = \mathcal{B}\}$ > ⇒ the normalizer of automorphims groups gives hints for classification issues (several papers by Laue) our 1-(4, 2, 3; 2) design admits $G \simeq \text{Sym}(4)$ as group of automorphisms our 1-(4, 2, 3; 2) design admits $G \simeq \text{Sym}(4)$ as group of automorphisms | | 0001,0111 | 0001,1011 | 0001,1101 | 0010,0111 | 0010,1011 | 0010,1110 | 0100,0111 | 0100,1101 | 0100,1110 | 1000,1011 | 1000,1101 | 1000,1110 | 1111,0011 | 1111,0101 | 1111,0110 | |----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | 1000 | 1 | 1 | 1 | | | | | | | | | | | | | | 0100 | | | | 1 | 1 | 1 | | | | | | | | | | | 0010 | | | | | | | 1 | 1 | 1 | | | | | | | | 0001 | | | | | | | | | | 1 | 1 | 1 | | | | | 1100 | | | | | | | 1 | | | 1 | | | 1 | | | | 1010 | | | | 1 | | | | | | | 1 | | | 1 | | | 1001 | | | | | 1 | | | 1 | | | | | | | 1 | | 0110 | 1 | - | | | | | | | - | | | 1 | | - | 1 | | 0101 | | 1 | 1 | | | 1 | | | 1 | | | | 1 | 1 | | | 0011 | 1 | | 1 | 1 | | 1 | 1 | | | | | | 1 | | | | 1110
1101
1011 | 1 | 1 | | 1 | 1 | | 1 | | | 1 | | | | | | | 1011 | | 1 | 1 | | _1 | | | 1 | | 1 | 1 | | | | | | 0111 | | | | | | 1 | | _ | 1 | | - | 1 | | | | | 1111 | | | | | | | | | _ | | | - | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | our 1-(4, 2, 3; 2) design admits $G \simeq \text{Sym}(4)$ as group of automorphisms | 1000 | | 0001,0111 | 0001,1011 | 0001,1101 | 0010,0111 | 0010,1011 | 0010,1110 | 0100,0111 | 0100,1101 | 0100,1110 | 1000,1011 | 1000,1101 | 1000,1110 | 1111,0011 | 1111,0101 | 1111,0110 | |--|------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0100
0010
0001
1100 | 1 | 1 | 1 | | 1 | 1 | | 1 | 1 | | | 1 | 1 | 1 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1001
0110
0101 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | | 1 | 1 | 1 | | | | | 1110
1101
1011
0111 | 1 | 1 | | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | | | | our 1-(4, 2, 3; 2) design admits $G \simeq \text{Sym}(4)$ as group of automorphisms | | 0001,0111 | 0001,1011 | 0001,1101 | 0010,0111
1 | 0010,1011 | 0010,1110 | 0100,0111
1 | 0100,
1101 | 0100,1110 | 1000,1011 | 1000,1101 | 1000,1110 | 1111,0011
1 | 1
1
1
1
0
1
0
1 | 1111,0110 | |----------------------|-----------|-----------|-----------|----------------|-----------|-----------|----------------|---------------|-----------|-----------|-----------|-----------|----------------|--------------------------------------|-----------| | 1000
0100 | 1 | 1 | 1 | _ | _ | _ | | | | | | | | | | | 0100 | | | | 1 | 1 | 1 | | | | | | | | | | | 0010 | | | | | | | 1 | 1 | 1 | | | | | | | | 0001 | | | | | | | | | | 1 | 1 | 1 | | | | | 0001
1100
1010 | | | | | | | 1 | | | 1 | | | 1 | | | | 1010 | | | | 1 | | | | | | | 1 | | | 1 | | | 1001 | | | | | 1 | | | 1 | | | | | | | 1 | | 0110 | 1 | | | | | | | | | | | 1 | | | 1 | | 0110
0101 | | 1 | | | | | | | 1 | | | | | 1 | | | 0011 | | | 1 | | | 1 | | | | | | | 1 | | | | 1110 | 1 | | | 1 | | | 1 | | | | | | | | | | 1101 | | 1 | | | 1 | | | | | 1 | | | | | | | 1101
1011 | | | 1 | | | | | 1 | | | 1 | | | | | | 0111 | | | | | | 1 | | | 1 | | | 1 | | | | | | | | | | | | | | | | | | - | - | - | our 1-(4,2,3;2) design admits $G \simeq \text{Sym}(4)$ as group of automorphisms | | 000 | 0000 | 0000 | 0010 | 001 | 001 | 0100 | 010 | 010 | 1000 | 1000 | 100 | 1111 | 1
1
1 | 1
1
1 | |--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-------------| | | 0001,0111 | 0001,1011 | 0001,1101 | 0010,0111 | 0010,1011 | 0010,1110 | 0100,0111 | 0100,1101 | 0100,1110 | 1000,1011 | 1000,1101 | 1000,1110 | 1111,0011 | 1111,0101 | 11111,0110 | | 1000 | 1 | 1 | 1 | | | U | | | U | | | U | _ | | 0 | | 1000
0100 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | | 0010 | | | | _ | - | 1 | 1 | 1 | 1 | | | | | | | | 0001 | | | | | | | | | | 1 | 1 | 1 | | | | | 1100
1010 | | | | | | | 1 | | | $\dot{1}$ | | | 1 | | | | 1010 | | | | 1 | | | | | | | 1 | | | 1 | | | 1001 | | | | | 1 | | | 1 | | | | | | | 1 | | 0110
0101 | 1 | | | | | | | | | | | 1 | | | 1 | | 0101 | | 1 | | | | | | | 1 | | | | | 1 | | | 0011 | | | 1 | | | 1 | | | | | | | 1 | | | | 1110
1101 | 1 | | | 1 | | | 1 | | | | | | | | | | 1101 | | 1 | | | 1 | | | | | 1 | | | | | | | 1011 | | | 1 | | | | | 1 | | | 1 | | | | | | 0111 | | | | | | 1 | | | 1 | | | 1 | | | | | 1111 | | | | | | | | | | | | | 1 | 1 | 1 | $\begin{vmatrix} 2 & 1 \\ 3 & 0 \\ 0 & 3 \end{vmatrix}$ condensed *G*-incidence matrix used to represent design admitting G Singer cycle $S(n,q) = \langle \sigma \rangle \simeq \mathbb{F}_{q^n}^*$ Singer cycle Frobenius automorphism $S(n,q) = \langle \sigma \rangle \simeq \mathbb{F}_{a^n}^* \quad F(n,q) = \langle \phi \rangle \simeq \operatorname{Aut}(\mathbb{F}_{a^n}/\mathbb{F}_q)$ Singer cycle Frobenius automorphism $\mathsf{S}(n,q) = \langle \sigma \rangle \simeq \mathbb{F}_{q^n}^* \quad \mathsf{F}(n,q) = \langle \phi \rangle \simeq \mathsf{Aut}(\mathbb{F}_{q^n}\!/\mathbb{F}_q)$ if ℓ divides n then $\langle \sigma, \phi^{\ell} \rangle \simeq \mathsf{N}(n/\ell, q^{\ell})$ if n prime then $\mathsf{N}(n,q)$ is maximal in $\mathsf{GL}(n,q)$ $\mathsf{N}(n,q)$ is self-normalizing in $\mathsf{GL}(n,q)$ $\begin{array}{ll} \text{Singer cycle} & \text{Frobenius automorphism} \\ \mathsf{S}(\textit{n},\textit{q}) = \langle \sigma \rangle \! \simeq \! \mathbb{F}_{q^n}^* & \mathsf{F}(\textit{n},\textit{q}) \! = \! \langle \phi \rangle \! \simeq \! \mathsf{Aut}(\mathbb{F}_{q^n}\!/\mathbb{F}_q) \end{array}$ if ℓ divides n then $\langle \sigma, \phi^{\ell} \rangle \simeq \mathsf{N}(n/\ell, q^{\ell})$ if n prime then N(n,q) is maximal in GL(n,q)N(n,q) is self-normalizing in GL(n,q) ### Corollary for primes n and q different t- $(n, k, \lambda; q)$ designs admitting N(n,q) as a group of automorphisms are non-isomorphic Singer cycle $$S(p,q) = \sqrt{q} \sim \mathbb{R}^*$$ Frobenius automorphism $\mathsf{S}(n,q) = \langle \sigma \rangle \simeq \mathbb{F}_{a^n}^* \quad \mathsf{F}(n,q) = \langle \phi \rangle \simeq \mathsf{Aut}(\mathbb{F}_{a^n}/\mathbb{F}_a)$ $$S_r(T) := \langle b_0 \dots b_{r-1} \mid b_i \in T, 0 \le i < r \rangle$$ $$\mathcal{B}_r := \{ S_r(T) \mid T \in {V \choose 2} \}$$ $$S_r(T) := \langle b_0 \dots b_{r-1} \mid b_i \in T, 0 \le i < r \rangle$$ $\mathcal{B}_r := \{S_r(T) \mid T \in \begin{bmatrix} v \\ 2 \end{bmatrix} \}$ ### Theorem (Suzuki, 1990) for $n \geq 7$ with (n, 4) = 1 the set \mathcal{B}_2 defines a 2- $(n, 3, \begin{bmatrix} 3 \\ 2 \end{bmatrix}_a; q)$ design admitting N(n,q) as a group of automorphisms $$S_r(T) := \langle b_0 \dots b_{r-1} \mid b_i \in T, 0 \le i < r \rangle$$ $$\mathcal{B}_r := \{ S_r(T) \mid T \in \begin{bmatrix} V \\ 2 \end{bmatrix} \}$$ ## Theorem (Suzuki, 1990) for $n \ge 7$ with (n,4) = 1 the set \mathcal{B}_2 defines a 2- $(n,3,\begin{bmatrix}3\\2\end{bmatrix}_q;q)$ design admitting N(n,q) as a group of automorphisms under which conditions does \mathcal{B}_r define a 2- $(n, r+1, {r+1 \brack 2}_q; q)$ design? $$S_r(T) := \langle b_0 \dots b_{r-1} \mid b_i \in T, 0 \le i < r \rangle$$ $$\mathcal{B}_r := \{ S_r(T) \mid T \in \begin{bmatrix} V \\ 2 \end{bmatrix} \}$$ ## Theorem (Suzuki, 1990) for $n \ge 7$ with (n,4) = 1 the set \mathcal{B}_2 defines a 2- $(n,3,\begin{bmatrix}3\\2\end{bmatrix}_q;q)$ design admitting N(n,q) as a group of automorphisms under which conditions does \mathcal{B}_r define a 2- $(n, r+1, {r+1 \brack 2}_q; q)$ design? Theorem (Abe, Yoshiara, 1993) the set $$\mathcal{B}_r$$ is no design for $q=2$ and $4 \le r+1 < n \le 15$ except for the pair $r=3$, $n=7$ $$S_r(T) := \langle b_0 \dots b_{r-1} \mid b_i \in T, 0 \le i < r \rangle$$ $$\mathcal{B}_r := \{ S_r(T) \mid T \in \begin{bmatrix} V \\ 2 \end{bmatrix} \}$$ ### Theorem (Suzuki, 1990) for $n \ge 7$ with (n,4) = 1 the set \mathcal{B}_2 defines a 2- $(n,3,\begin{bmatrix}3\\2\end{bmatrix}_q;q)$ design admitting N(n,q) as a group of automorphisms under which conditions does \mathcal{B}_r define a 2- $(n, r+1, {r+1 \brack 2}_q; q)$ design? Theorem (Abe, Yoshiara, 1993) the set \mathcal{B}_r is no design for q=2 and $4 \le r+1 < n \le 15$ except for the pair r=3, n=7 conjecture: \mathcal{B}_3 is the dual of \mathcal{B}_2 for n=7 and all q # Theorem (Kramer, Mesner, 1976) there exists a t- $(n, k, \lambda; q)$ design ### Theorem (Kramer, Mesner, 1976) there exists a t- $(n, k, \lambda; q)$ design iff \exists 0-1 solution $x = [\dots, x_K, \dots]^t$ of ### Theorem (Kramer, Mesner, 1976) there exists a t- $(n, k, \lambda; q)$ design there exists a $$t$$ - (n, κ, λ, q) design iff $$\exists$$ 0-1 solution $x = [\dots, x_K, \dots]^t$ of with $\zeta_{t,k} = (\zeta_{TK})$ ### Theorem (Kramer, Mesner, 1976) there exists a t- $(n, k, \lambda; q)$ design iff $$\exists$$ 0-1 solution $x = [\dots, x_K, \dots]^t$ of $$\begin{bmatrix} V \\ t \end{bmatrix} \ni \qquad T \qquad \begin{bmatrix} K & \in & \begin{bmatrix} V \\ k \end{bmatrix} \\ \vdots \\ K & \in & \begin{bmatrix} V \\ k \end{bmatrix} \end{bmatrix} \vdots \\ X \downarrow K & \in & \begin{bmatrix} V \\ k \end{bmatrix} \\ \vdots \\ \lambda & &$$ with $\overline{\zeta_{t,k}} = (\zeta_{TK})$ # Theorem (Kramer, Mesner, 1976) there exists a t- $(n, k, \lambda; q)$ design admitting $G \leq \operatorname{Aut}(L(V))$ as a group of automorphisms iff $$\exists$$ 0-1 solution $x = [\dots, x_K, \dots]^t$ of
with $\zeta_{t,k}^{\mathsf{G}} = (\zeta_{\mathsf{T}K}^{\mathsf{G}})$ $$G(K) \in G \setminus \begin{bmatrix} V \\ k \end{bmatrix} \\ \vdots \\ C \setminus \begin{bmatrix} V \\ t \end{bmatrix} \ni G(T) \quad \vdots \\ \cdots \quad \zeta_{TK}^{G} \quad \vdots \\ \vdots \\ \lambda \quad \vdots$$ $$\zeta_{TK}^G = \sum_{K' \in G(K)} \zeta(T, K')$$ 2-(7, 3, 7; 2) 2-(7,3,7;2) plain incidence matrix $\zeta_{2,3}$ 2667 × 11811 2-(7,3,7;2) plain incidence matrix $\zeta_{2,3}$ 2667 \times 11811 prescribed group of automorphisms normalizer of a singer cycle N(7, 2) of order 889 2-(7,3,7;2) plain incidence matrix $\zeta_{2,3}$ 2667 \times 11811 prescribed group of automorphisms normalizer of a singer cycle N(7, 2)of order 889 we consider Suzuki's design... 2-(7,3,7;2) plain incidence matrix $\zeta_{2,3}$ 2667 \times 11811 prescribed group of automorphisms normalizer of a singer cycle N(7, 2)of order 889 we consider Suzuki's design... 2-(7,3,7;2) plain incidence matrix $\zeta_{2,3}$ 2667 \times 11811 prescribed group of automorphisms normalizer of a singer cycle N(7, 2)of order 889 19 solutions (non-isomorphic) $$\begin{array}{c} \text{t-}(\textit{n},\textit{k},\lambda;\textit{q}) \text{ design } \mathcal{B} \text{ transitive} \\ \text{iff } |A_{\mathcal{B}} \backslash \! \backslash {V \brack 1}| = 1 \end{array}$$ $$egin{aligned} t ext{-}(n,k,\lambda;q) ext{ design } \mathcal{B} ext{ transitive } \ & ext{iff } |A_{\mathcal{B}}ackslashig[{Vtop 1}]|=1 \end{aligned}$$ #### Theorem (Miyakawa, Munemasa, Yoshiara, 1995) \mathcal{B} non-trivial transitive t- $(n, k, \lambda; q)$ design, $t \geq 2$ - if n = 6 then $q \equiv 1 \mod 3$ and $S(6, q) \not\leq A_{\mathcal{B}} \leq N(6, q)$ - if n prime then either $A_{\mathcal{B}} = S(n,q)$ or $A_{\mathcal{B}} = N(n,q)$ $$t ext{-}(n,k,\lambda;q)$$ design $\mathcal B$ transitive iff $|A_{\mathcal B}ackslashigl[{Vtop 1}]|=1$ # **Theorem (Miyakawa, Munemasa, Yoshiara, 1995)** \mathcal{B} non-trivial transitive t- $(n, k, \lambda; q)$ design, $t \geq 2$ – if n = 6 then $q \equiv 1 \mod 3$ and $S(6, q) \not\leq A_{\mathcal{B}} \leq N(6, q)$ – if n prime then either $A_{\mathcal{B}} = S(n, q)$ or $A_{\mathcal{B}} = N(n, q)$ ⇒ Suzuki's design is transitive $$\text{t-}(n,k,\lambda;q) \text{ design } \mathcal{B} \text{ transitive } \\ \text{iff } |A_{\mathcal{B}} \backslash \! \backslash {V \brack 1}| = 1$$ Theorem (Miyakawa, Munemasa, Yoshiara, 1995) \mathcal{B} non-trivial transitive t- $(n, k, \lambda; q)$ design, $t \geq 2$ — if n = 6 then $q \equiv 1 \mod 3$ and $S(6, q) \not\leq A_{\mathcal{B}} \leq N(6, q)$ — if n prime then either $A_{\mathcal{B}} = S(n, q)$ or $A_{\mathcal{B}} = N(n, q)$ ⇒ Suzuki's design is transitive #### Theorem (Miyakawa, Munemasa, Yoshiara, 1995) $$[\lambda, \text{number of non-isom. } 2-(7,3,\lambda;q) \text{ designs } \mathcal{B} \text{ with } A_{\mathcal{B}} = \mathbb{N}(n,q)]$$ $$q=2$$: [3,2], [5,14], [7,19], [10,30], [12,90], [14,55], [λ ,0] for $\lambda=1,2,4,6,8,9,11,13,15$ $$q=$$ 3: [5,22], [λ ,0] for $\lambda=$ 1,2,3,4 ``` further computer results for the binary field ... ``` #### Theorem (B., Kerber, Laue, S. Braun, 2005–2015) $|\zeta_{t,k}^G|$ t- $(n, k, \lambda; q)$ $3-(8, 4, \lambda; 2)$ N(8, 2) 53×109 11 $N(4, 2^2)$ 105×217 11. 15 2-(11, 3, λ ; 2) N(11, 2) 31×2263 245, 252 2-(10, 3, λ ; 2) N(10, 2) 20×633 15, 30, 45, 60, 75, 90, 105, 120 $2-(9,4,\lambda;2)$ N(9,2) 11×725 966, 1008, 1029, 1071, 1092, 1134, 1155, 336, 378, 399, 441, 462, 504, 525, 567, 588, 630, 651, 693, 714, 756, 777, 819, 840, 882, 903, 945, 1197, 1218, 1260, 1281, 1323 N(9, 2) 11×177 63 $N(3, 2^3)$ 31×529 21, 22, 42, 43, 63 $N(8,2) \times 1$ 28×408 7, 12, 19, 24, 31, 36, 43, 48, 55, 60 $M(3, 2^3)$ 40×460 49 15×217 $2-(8, 4, \lambda; 2)$ $N(4, 2^2)$ 21, 35, 56, 70, 91, 105, 126, 140, 161, 175, 196, 210, 231, 245, 266, 280, 301, 315 $N(7,2) \times 1 \quad 13 \times 231$ 7, 14, 49, 56, 63, <u>98,</u> 105, <u>112,</u> 147, <u>154,</u> 161, 3, 5, 7, 10, 12, 14, 196, 203, 210, 245, 252, 259, 294, 301, 308 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 $2-(9,3,\lambda;2)$ 21 3, 6 15×105 3×15 21×93 77×155 $2-(8,3,\lambda;2)$ $2-(7,3,\lambda;2)$ $2-(6,3,\lambda;2)$ $N(4, 2^2)$ N(7, 2) S(7, 2) $\langle \sigma^7 \rangle$ 21, 63, 84, 126, 147, 189, 210, 252, 273, 315, #### t- $(n, k, \lambda; q)$ G ... also for q=3, 4 and 5 | 2-(8, 3, λ ; 3) | N(8, 3) | |-------------------------|---------| | 2- $(7, 3, \lambda; 3)$ | N(7, 3) | $2-(6,3,\lambda;3)$ $2-(6,3,\lambda;4)$ $2-(6,3,\lambda;5)$ $$(7,3)$$ 13×121 $(7,4)$ $(7,3)$ 25×76 $$\langle \sigma^2, \phi^2 \rangle$$ $\langle \sigma^{17}, \phi \rangle$ $\langle \sigma^3, \phi \rangle$ N(6,5) $\langle \sigma^3, \phi \rangle \times 1$ $$\langle \sigma^{17}, \phi \rangle$$ 93 × 234 S(5,3)×1 51 × 150 $$\langle \sigma^1, \phi \rangle$$ 93 S(5,3)×1 51 $\langle \sigma^2 \rangle \times 1$ 91 $|\zeta_{t,k}^G|$ 41×977 $$\frac{91 \times 280}{51 \times 161}$$ 53×248 78 λ 20 16 8, 16, 20 52, 104, 156 $$t$$ - $(n, k, \lambda; q)$ $$t-(n,k,\begin{bmatrix}n-t\\k-t\end{bmatrix}_q-\lambda;q)$$ supplemented $$t-(n,k,\lambda;q)$$ $$t\text{-}(n,k,\left[\begin{smallmatrix} n-t \\ k-t \end{smallmatrix} \right]_q - \lambda;q)$$ supplemented $$t\text{-}(n,k,\lambda;q)$$ derived $$(t-1)\text{-}(n-1,k-1,\lambda;q)$$ $t-(n, k, {n-t \brack k-t}_q - \lambda; q)$ supplemented #### (V, \mathcal{B}) t- $(n, k, \lambda; q)$ design t- $(n, k, \lambda; q)$ $$(V, B)$$ t- $(n, k, \lambda; q)$ design $i + i < t$. $P \in [V]$. $H \in I$ derived $$i + j \le t$$, $P \in \begin{bmatrix} V \\ i \end{bmatrix}$, $H \in \begin{bmatrix} V \\ n-j \end{bmatrix}$ $$(V,B)$$ $t-(N,K,X,Q)$ $i+j \leq t, P \in \begin{bmatrix} V \\ i \end{bmatrix}$ $$i + j \le t, P \in {V \brack i}, H \in {V \brack n-j}$$ $$\Rightarrow |\{B \in \mathcal{B} \mid P \le B \le H\}| = \lambda \frac{{n-j-i \brack k-i}_q}{{n-1 \brack k-i}_q}$$ $$\{ , \lambda ; q \}$$ design $\{ ar{V} \}$. $H \in \mathbb{R}$ (t-1)- $(n-1, k-1, \lambda; q)$ design $$H \in [$$ $$\lambda; q)$$ desi $$\lambda; q)$$ designation $$\lambda; q)$$ des $$q$$) des $$\lambda; q)$$ des $$(\lambda,\lambda;q)$$ de $$,\lambda;q)$$ de $$(a,\lambda;q)$$ de Theorem (Suzuki, 1989) $$(V, B)$$ t - $(n, k, \lambda; a)$ design (Suzuki, $$(n, k, \lambda; a)$$ $t-(n, k, {n-t \brack k-t}_q - \lambda; q)$ (i=t-1, j=0) reduced (t-1)- $(n, k, \lambda \frac{q^{n-t+1}-1}{a^{k-t+1}-1}; q)$ t- $(n, k, \lambda; q)$ $$\Rightarrow |\{B \in \mathcal{B} \mid P \leq B \leq H\}| = \lambda \frac{{\binom{n-t}{k-t}}_q^{-t}}{{\binom{n-t}{k-t}}_q}$$ (t-1)- $(n-1, k-1, \lambda; q)$ $$D \geq H$$ $$\leq H$$ $$\leq H$$ $$\leq H$$ $$3 \leq F$$ $$\leq H$$ $$B \leq F$$ $$8 \leq F$$ $$3 \leq F$$ $i + j \le t, P \in {V \brack i}, H \in {V \brack n-j}$ Theorem (Suzuki, 1989) (V, \mathcal{B}) t- $(n, k, \lambda; q)$ design derived further constructions Theorem (Suzuki, 1989) (V, \mathcal{B}) t- $(n, k, \lambda; q)$ design $i+j \leq t, P \in {V \brack i}, H \in {V \brack n-i}$ $t-(n,k,\begin{bmatrix}n-t\\k-t\end{bmatrix}_q-\lambda;q)$ $\Rightarrow |\{B \in \mathcal{B} \mid P \leq B \leq H\}| = \lambda \frac{\lfloor \frac{n-1}{2} \rfloor_q}{\lfloor \frac{n-1}{2} \rfloor}$ supplemented t- $(n, k, \lambda; q)$ (i=t-1, j=0) reduced derived (t-1)- $(n-1, k-1, \lambda; q)$ $$(i=0, j=t, \cdot^{\text{dual}})$$ $$t-(n, n-k, \lambda {n-t \brack k}_q/{n-t \brack k-t}_q; q)$$ (t-1)- $(n, k, \lambda \frac{q^{n-t+1}-1}{q^{k-t+1}-1}; q)$ further constructions Theorem (Suzuki, 1989) (V, \mathcal{B}) t- $(n, k, \lambda; q)$ design $i+j \leq t, P \in {V \brack i}, H \in {V \brack n-i}$ $t-(n, k, {n-t \brack k-t}_q - \lambda; q)$ $\Rightarrow |\{B \in \mathcal{B} \mid P \leq B \leq H\}| = \lambda \frac{{\binom{n-1}{k-1}}_q}{{\binom{n-1}{k-1}}_q}$ supplemented t- $(n, k, \lambda; q)$ derived (i=t-1, j=0) reduced (t-1)- $(n, k, \lambda \frac{q^{n-t+1}-1}{q^{k-t+1}-1}; q)$ (t-1)- $(n-1, k-1, \lambda; q)$ $$(i=0,j=t,\cdot^{\perp}) / (i=t-1,j=1)$$ $$t-(n,n-k,\lambda{n-t \brack k}_q/{n-t \brack k-t}_q;q)$$ $$(t-1)-(n-1,k,\lambda\frac{q^{n-k}-1}{q^{k-t+1}-1};q)$$ residual ## Theorem (Kiermaier, Laue, 2014) the existence of designs for derived and residual parameters implies the existence of a design for the reduced parameters ``` 2-(9,3,21;2) thickness by computer 2-(9,4,441;2) ``` Theorem (Kiermaier, Laue, 2014) the existence of designs for derived and residual parameters implies the existence of a design for the reduced parameters Theorem (Kiermaier, Laue, 2014) the existence of designs for derived and residual parameters implies the existence of a design for the reduced parameters and residual parameters implies the existence of a design for the reduced parameters #### Corollary (Kiermaier, Laue, 2014) There exist designs with parameters 2-(8, 4, λ ; 2) for $\lambda = 63$, 84, 147, 168, 189, 252, 273, 294 2-(10, 4, λ ; 2) for $\lambda = 1785$, 1870, 3570, 3655, 5355 2-(8, 4, 91 λ ; 3) for $\lambda = 5$, 6, 7, . . . , 60 for the reduced parameters $$2-(7,3, [\frac{3}{2}]_q; q)$$ $$2-(7,3,\begin{bmatrix}3\\2\end{bmatrix}_q;q)$$ $$\downarrow^{\text{dual}}$$ $$2-(7,4,\begin{bmatrix}4\\2\end{bmatrix}_q;q)$$ further consequences? ### Corollary there exists a family of $2-(8,4,\frac{(q^6-1)(q^3-1)}{(q^2-1)(q-1)};q)$ designs for all prime powers q $$(t-1)$$ - $(2t+3, t+1, \lambda \frac{q^{t+3}-1}{q^2-1}; q)$ $(t-1)$ - $(2t+3, t, \lambda; q)$ $$(t-1) - (2t+4,t+1,\lambda;q)$$ $$(t-1) - (2t+4,t+2,\lambda;q)$$ $$(t-1) - (2t+4,t+2,\lambda;q)$$ $$(t-1) - (2t+4,t+2,\lambda;q)$$ $$(t-1) - (2t+4,t+2,\lambda;q)$$ $$(t-1) - (2t+3,t+2,\lambda;q)$$ $$(t-1) - (2t+4,t+2,\lambda;q)$$ $$(t-1) - (2t+5,t+3,\lambda;q)$$ (2t+6,t+3,\lambda;q)$$ (2t+6,t+3,\lambda$$ #### **Corollary** There exist designs with parameters 2-(10, 4, 85 λ ; 2), 2-(10, 5, 765 λ ; 2), 2-(11, 5, 6205
λ ; 2), 2-(12, 6, 423181 λ ; 2) for $\lambda = 7, 12, 19, 21, 22, 24, 31, 36, 42, 43, 48, 49, 55, 60, 63$ computer results for t = 3 and q = 2 #### Theorem (Itoh, 1998) there is a family of 2- $(n\ell,3,q^3\frac{q^{n-5}-1}{q-1};q)$ designs admitting $\mathrm{SL}(\ell,q^n)$ as group of automorphisms for $q\geq 2,\ \ell\geq 3,\ n\equiv 5\ \mathrm{mod}\ 6(q-1)$ #### Theorem (Itoh, 1998) there is a family of 2- $(n\ell,3,q^3\frac{q^{n-5}-1}{q-1};q)$ designs admitting $\mathrm{SL}(\ell,q^n)$ as group of automorphisms for $q\geq 2$, $\ell\geq 3$, $n\equiv 5 \mod 6(q-1)$ $$\zeta_{2,3}^{\mathsf{SL}(\ell,q^n)} = \left[egin{array}{c|cccc} \zeta_{2,3}^{\mathsf{S}(n,q)} & a & & & & & & \\ \hline \zeta_{2,3}^{\mathsf{SL}(\ell,q^n)} & \ddots & & 0 & & 0 \\ \hline & 0 & X & Y & Z \end{array} \right]$$ $\overline{2-(n,3,\lambda;q)}$ designs admitting S(n,q) can be extended to $2-(n\ell,3,\lambda;q)$ designs admitting $SL(\ell,q^n)$ if λ is appropriate #### Theorem (Itoh, 1998) there is a family of 2- $(n\ell, 3, q^3 \frac{q^{n-5}-1}{q-1}; q)$ designs admitting $SL(\ell, q^n)$ as group of automorphisms for $q \geq 2$, $\ell \geq 3$, $n \equiv 5 \mod 6(q-1)$ extension possible if $$\lambda = q(q+1)(q^3-1)s + q(q^2-1)t$$ for some integer $s \ge 0$, $t \in \{0,1\}$ if 3|n and t = 0 otherwise extension possible if $$\lambda = q(q+1)(q^3-1)s + q(q^2-1)t$$ for some integer $s \ge 0$, $t \in \{0,1\}$ if 3|n and t = 0 otherwise for $$\ell \geq 3$$, $n \equiv 5 \mod 6(q-1)$ Suzuki's supplemented design has index value λ of required form further results from Itoh's construction? $$q = 2$$: $\lambda = 42s + 6t$ $q = 3$: $\lambda = 312s + 24t$ further results from Itoh's construction? ``` computer constructions of designs admitting S(n, q) ``` further results from Itoh's construction? 2-(8, 3, 21; 2) $$\stackrel{\text{supp}}{\Rightarrow}$$ 2-(8, 3, 42; 2) 2-(9, 3, 42; 2) 2-(9, 3, 43; 2) $\stackrel{\text{supp}}{\Rightarrow}$ 2-(9, 3, 84; 2) $2-(10, 3, 45; 2) \stackrel{\text{supp}}{\Rightarrow} 2-(10, 3, 210; 2)$ 2-(13, 3, 42s; 2) for 1 < s < 25 $$(3, 45; 2) \stackrel{\text{supp}}{\Rightarrow} 2 - (10, 3, 210; 3, 42s; 2) \text{ for } 1 \le s \le 25$$ $2-(8,3,52;3) \stackrel{\text{supp}}{\Rightarrow} 2-(8,3,312;3)$ $$f^2 = (3, 3, 3, 3, 2)$$ or $1 < s < 25$ a = 3: $\lambda = 312s + 24t$ q = 2: $\lambda = 42s + 6t$ computer constructions of designs admitting S(n, q) further results from Itoh's construction? 2-(9, 3, 42; 2) $2-(9,3,43;2) \stackrel{\text{supp}}{\Rightarrow} 2-(9,3,84;2)$ 2-(13, 3, 42s; 2) for 1 < s < 25 $2-(8,3,52;3) \stackrel{\text{supp}}{\Rightarrow} 2-(8,3,312;3)$ $2-(10, 3, 45; 2) \stackrel{\text{supp}}{\Rightarrow} 2-(10, 3, 210; 2)$ $2-(8,3,21;2) \stackrel{\text{supp}}{\Rightarrow} 2-(8,3,42;2)$ a = 3: $\lambda = 312s + 24t$ q = 2: $\lambda = 42s + 6t$ Corollary there exist families of designs admitting $SL(\ell, q^n)$ for $\ell > 3$ $2-(8\ell, 3, 42; 2)$ $2-(9\ell, 3, 42s; 2)$ for 1 < s < 2 $2-(10\ell, 3, 210; 2)$ $2-(13\ell, 3, 42s; 2)$ for 1 < s < 25 $2-(8\ell, 3, 312; 3)$ $$S_q(t, k, n)$$ q-Steiner system = t - $(n, k, 1; q)$ design $$S_q(t, k, n)$$ q-Steiner system = t - $(n, k, 1; q)$ design ## **Theorem** $S_q(1, k, n)$ exists if and only if k divides n $$S_q(t, k, n)$$ q-Steiner system = t - $(n, k, 1; q)$ design ### **Theorem** $S_q(1, k, n)$ exists if and only if k divides n trivial q-Steiner systems $$S_q(t, k, n)$$ q-Steiner system = t - $(n, k, 1; q)$ design #### **Theorem** $S_q(1, k, n)$ exists if and only if k divides n trivial q-Steiner systems existence of non-trivial $q ext{-Steiner}$ systems (t>1) was long-standing issue ... **Theorem (B., Etzion, Östergård, Vardy, Wassermann, 2012)** *q*-Steiner systems do exist Theorem (B., Etzion, Östergård, Vardy, Wassermann, 2012) q-Steiner systems do exist $S_2(2,3,13)$ # **Theorem (B., Etzion, Östergård, Vardy, Wassermann, 2012)** *q*-Steiner systems do exist $$S_2(2,3,13)$$ automorphism group N(13, 2) of order $13 \cdot (2^{13} - 1) = 106483$ consisting of 15 orbits of full length 106483 taken out of 25572 possible orbits ≥ 1050 disjoint solutions all non-isomorphic solved with Knuth's dancing links it would have size 381 it would have size 381 replacing "exactly" by "at most" yields *q*-packing (subspace codes) it would have size 381 replacing "exactly" by "at most" yields q-packing (subspace codes) best known size is 329 (B., Reichelt, 2014) (Liu, Honold, 2014) | what if $S_2(2,3,7)$ does exist? | | | |----------------------------------|--|--| | | | | | | | | | | | | $\mbox{what is the automorphism group?} \\ \mbox{what if $S_2(2,3,7)$ does exist?}$ what is the automorphism group? what if $S_2(2,3,7)$ does exist? exclude groups step by step what is the automorphism group? $$\mathop{\mathsf{A}}_ullet$$ = $\mathop{\mathsf{Aut}}(\mathit{L}(\mathit{V}))$ $$\{1\}$$ consider only one subgroup of each conjugacy class exclude groups step by step 1) choose representative *G* of some conjugacy class of *A* ____ what is the automorphism group? A = Aut(L(V)) ____ G ____ $\{1\}$ consider only one subgroup of each conjugacy class exclude groups step by step 1) choose representative $$G$$ of some conjugacy class of A 2) solve $$\zeta_{t,k}^{G} x = [1, ..., 1]^{t}$$ exclude groups step by step what is the automorphism group? $$A = \operatorname{Aut}(L(V))$$ $$\{1\}$$ consider only one subgroup of each conjugacy class 2) solve $$\zeta_{t,k}^{G} x = [1, ..., 1]^{t}$$ exclude groups step by step what is the automorphism group? $$\underset{\bullet}{A}=\operatorname{Aut}(L(V))$$ $$\{1\}$$ consider only one subgroup of each conjugacy class 1) choose representative G of some conjugacy class of A 2) solve $$\zeta_{t,k}^{G} x = [1, ..., 1]^{t}$$ 3) no solution \Rightarrow subgroups S with $G \leq S \leq A$ and their conjugacy classes cannot occur as groups of automorphisms exclude groups step by step what is the automorphism group? $$A = \operatorname{Aut}(L(V))$$ $\{1\}$ consider only one subgroup of each conjugacy class | systematic elimination of | |------------------------------| | subgroups (p-groups first) | | and conjugacy classes yields | | | systematic elimination of subgroups (*p*-groups first) and conjugacy classes yields... ## Theorem (B., Kiermaier, Nakić, 2014) the automorphism group of $S_2(2,3,7)$ is either trivial or | generated by one of the following matrices | | | | | | | |--|------------------|------------------|-----------------------------|--|--|--| | ГО 1 О О О О О О | го 1 0 0 0 0 0 7 | го 1 0 0 0 0 0 7 | Γ1 1 0 0 0 0 0 ₇ | | | | | 1000000 | 1100000 | 1100000 | 0110000 | | | | | 0001000 | 0001000 | 0001000 | 0010000 | | | | | 0010000 | 0011000 | 0011000 | 0001100 | | | | | 0000010 | 0000010 | 0000100 | 0000110 | | | | | 0000100 | 0000110 | 0000010 | 0000011 | | | | | [0000001] | [0000001] | [0000001] | [0000001] | | | | | order 2 | order 3 | order 3 | order 4 | | | | | we consider collections of disjoint designs | | | |---|--|--| | | | | | | | | we consider collections of disjoint designs ... an $$LS_q[N](t, k, n)$$ large set is a partition of $\begin{bmatrix} V \\ k \end{bmatrix}$ into N disjoint t - $(n, k, \begin{bmatrix} n-t \\ k-t \end{bmatrix}_q/N; q)$ designs N=2: halving we consider collections of disjoint designs ... an $$\mathrm{LS}_q[N](t,k,n)$$ large set is a partition of $\begin{bmatrix} V \\ k \end{bmatrix}$ into N disjoint t - $(n,k,\begin{bmatrix} n-t \\ k-t \end{bmatrix}_q/N;q)$ designs $$N=2$$: halving $$t-(n, k, {n-t \brack k-t}_q/2; q)$$ an $$LS_q[N](t, k, n)$$ large set is a partition of $\begin{bmatrix} V \\ k \end{bmatrix}$ into N disjoint t - $(n, k, \begin{bmatrix} n-t \\ k-t \end{bmatrix}_q/N; q)$ designs $$N=2$$: halving $$t$$ - $(n, k, {n-t \brack k-t}_q/2; q)$ \downarrow $supp$ $$t-(n,k,\begin{bmatrix}n-t\\k-t\end{bmatrix}_q/2;q)$$ an $$LS_q[N](t, k, n)$$ large set is a partition of $\begin{bmatrix} V \\ k \end{bmatrix}$ into N disjoint t - $(n, k, \begin{bmatrix} n-t \\ k-t \end{bmatrix}_q/N; q)$ designs $$N=2$$: halving t- $$(n, k, {n-t \brack k-t}_q/2; q)$$ $$\downarrow \text{supp}$$ $$t-(n, k, {n-t \brack k-t}_q/2; q)$$ an $$LS_q[N](t, k, n)$$ large set is a partition of $\begin{bmatrix} V \\ k \end{bmatrix}$ into N disjoint t - $(n, k, \begin{bmatrix} n-t \\ k-t \end{bmatrix}_q/N; q)$ designs $$N=2$$: halving examples $LS_3[2](2,3,6)$ t - $(n,k,\begin{bmatrix}n-t\\k-t\end{bmatrix}_q/2;q)$ $LS_q[2](t,k,n)$ $t-(n,k,\begin{bmatrix}n-t\\k-t\end{bmatrix}_q/2;q)$ an $$LS_q[N](t, k, n)$$ large set is a partition of $\begin{bmatrix} V \\ k \end{bmatrix}$ into N disjoint t - $(n, k, \begin{bmatrix} n-t \\ k-t \end{bmatrix}_q/N; q)$ designs we consider collections of disjoint designs ... an $$LS_q[N](t, k, n)$$ large set is a partition of $\begin{bmatrix} V \\ k \end{bmatrix}$ into N disjoint t - $(n, k, \begin{bmatrix} n-t \\ k-t \end{bmatrix}_q/N; q)$ designs Theorem (B., Kohnert, Östergård, Wassermann, 2014) large sets $LS_a[N](t, k, n)$ for N > 2 do exist $$N=2$$: halving examples $LS_3[2](2,3,6)$ t - $(n,k,\begin{bmatrix}n-t\\k-t\end{bmatrix}_q/2;q)$ $LS_q[2](t,k,n)$ t - $(n,k,\begin{bmatrix}n-t\\k-t\end{bmatrix}_q/2;q)$ we consider collections of disjoint designs ... an $$LS_q[N](t, k, n)$$ large set is a partition of $\begin{bmatrix} V \\ k \end{bmatrix}$ into N disjoint t - $(n, k, \begin{bmatrix} n-t \\ k-t \end{bmatrix}_q/N; q)$ designs Theorem (B., Kohnert, Östergård, Wassermann, 2014) large sets $LS_a[N](t, k, n)$ for N > 2 do exist $$LS_2[3](2,3,8)$$ $$\mathcal{S} \subseteq {V \brack k}$$ is (N, t) -partitionable iff there is a partition $\mathcal{B}_1, \dots, \mathcal{B}_N$ of \mathcal{S} such that $\forall T \in {V \brack t}$ and $\forall i, j \mid \{B \in \mathcal{B}_i \mid T \subseteq B\} \mid = |\{B \in \mathcal{B}_j \mid T \subseteq B\}|$ $$\mathcal{S} \subseteq {V \brack k}$$ is (N,t) -partitionable iff there is a partition
$\mathcal{B}_1,\ldots,\mathcal{B}_N$ of \mathcal{S} such that $\forall T \in {V \brack t}$ and $\forall i,j$ for different $T \mid \{B \in \mathcal{B}_i \mid T \subseteq B\} \mid = |\{B \in \mathcal{B}_j \mid T \subseteq B\}|$ large set $$LS_q[N](t, k, n)$$ for $S = \begin{bmatrix} V \\ L \end{bmatrix}$ $$\mathcal{S} \subseteq {V \brack k}$$ is (N, t) -partitionable iff there is a partition $\mathcal{B}_1, \ldots, \mathcal{B}_N$ of \mathcal{S} such that $\forall T \in {V \brack t}$ and $\forall i, j$ $|\{B \in \mathcal{B}_i \mid T \subseteq B\}| = |\{B \in \mathcal{B}_i \mid T \subseteq B\}|$ number can be different for different T idea for recursive construction of large sets large set $$LS_q[N](t,k,n)$$ for $S = {V \brack k}$ for $S = {V \brack k}$ is (N,t) -partitionable iff there is a partition B_1,\ldots,B_N of S such that $\forall T \in {V \brack t}$ and $\forall i,j$ for different T $|\{B \in \mathcal{B}_i \mid T \subseteq B\}| = |\{B \in \mathcal{B}_i \mid T \subseteq B\}|$ idea for recursive construction of large sets – union and "joins" of (N,*)-partitionable sets are also (N,*)-partitionable large set $$LS_q[N](t, k, n)$$ for $S = {V \brack k}$ $S \subseteq {V \brack k}$ is (N, t) -partitionable iff there is a partition $\mathcal{B}_1, \dots, \mathcal{B}_N$ of S such that $\forall T \in {V \brack k}$ and $\forall i, j$ $|\{B \in \mathcal{B}_i \mid T \subseteq B\}| = |\{B \in \mathcal{B}_i \mid T \subseteq B\}|$ number can be different for different \mathcal{T} #### idea for recursive construction of large sets - union and "joins" of (N, *)-partitionable sets are also (N, *)-partitionable - decompose $\begin{bmatrix} V \\ k \end{bmatrix}$ into union of joins of (N, *)-partitionable sets large set $$LS_q[N](t, k, n)$$ for $S = {V \brack k}$ $S \subseteq {V \brack k}$ is (N, t) -partitionable iff there is a partition B_1, \ldots, B_N of S such that $\forall T \in {V \brack t}$ and $\forall i, j$ $|\{B \in \mathcal{B}_i \mid T \subseteq B\}| = |\{B \in \mathcal{B}_i \mid T \subseteq B\}|$ number can be different for different ${\cal T}$ ## idea for recursive construction of large sets - union and "joins" of (N, *)-partitionable sets are also (N, *)-partitionable - decompose $\begin{bmatrix} V \\ k \end{bmatrix}$ into union of joins of (N, *)-partitionable sets $$\Rightarrow \begin{bmatrix} V \\ k \end{bmatrix}$$ is $(N, *)$ -partitionable large set $$LS_q[N](t,k,n)$$ for $S = {V \brack k}$ $S \subseteq {V \brack k}$ is (N,t) -partitionable iff there is a partition $\mathcal{B}_1,\ldots,\mathcal{B}_N$ of S such that $\forall T \in {V \brack t}$ and $\forall i,j$ $|\{B \in \mathcal{B}_i \mid T \subseteq B\}| = |\{B \in \mathcal{B}_i \mid T \subseteq B\}|$ number can be different for different ${\cal T}$ ## idea for recursive construction of large sets - union and "joins" of (N, *)-partitionable sets are also (N, *)-partitionable - decompose $\begin{bmatrix} V \\ k \end{bmatrix}$ into union of joins of (N, *)-partitionable sets $$\Rightarrow \begin{bmatrix} V \\ k \end{bmatrix}$$ is $(N, *)$ -partitionable \Rightarrow large set large set $$LS_q[N](t, k, n)$$ for $S = {V \brack k}$ $S \subseteq {V \brack k}$ is (N, t) -partitionable iff there is a partition $\mathcal{B}_1, \ldots, \mathcal{B}_N$ of S such that $\forall T \in {V \brack t}$ and $\forall i, j$ $|\{B \in \mathcal{B}_i | T \subseteq B\}| = |\{B \in \mathcal{B}_j | T \subseteq B\}|$ number can be different for different ${\cal T}$ | dentify subspaces with | | |------------------------------|--| | canonical generator matrices | | | columns form base) | | $$\Gamma \star \Delta$$ $$\begin{array}{|c|c|c|c|}\hline \Gamma & X \\ \hline & \Delta \\ \hline \end{array}$$ X, Y contain 0 at all pivot row positions of Γ , Id identity matrix X, Y contain 0 at all pivot row positions of Γ , Id identity matrix $$\mathcal{S} \star \mathcal{T} := \{ \Gamma \star \Delta \mid \Gamma \in \mathcal{S}, \Delta \in \mathcal{T} \}$$ X, Y contain 0 at all pivot row positions of Γ , Id identity matrix # Lemma (B., Kiermaier, Kohnert, Laue, 2014) 1) $$S, T \subseteq {V \brack k}$$ (N, t)-partitionable, disjoint $S \cup T$ (N, t)-partitionable $$\mathcal{S} \star \mathcal{T} := \{ \Gamma \star \Delta \mid \Gamma \in \mathcal{S}, \Delta \in \mathcal{T} \}$$ X, Y contain 0 at all pivot row positions of Γ , Id identity matrix # Lemma (B., Kiermaier, Kohnert, Laue, 2014) - 1) $\mathcal{S}, \mathcal{T} \subseteq {V \brack k}$ (N, t)-partitionable, disjoint - $\Rightarrow S \cup \widetilde{T}(N, t)$ -partitionable - 2) $S \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$ (N, t)-partitionable, $\mathcal{T} \subseteq \begin{bmatrix} W \\ s \end{bmatrix}$ (N, r)-partitionable $\Rightarrow S \star \mathcal{T}$ (N, t + r + 1)-partitionable $$\mathcal{S}\star\mathcal{T}:=\{\Gamma\star\Delta\mid\Gamma\in\mathcal{S},\Delta\in\mathcal{T}\}$$ X, Y contain 0 at all pivot row positions of Γ , Id identity matrix # Lemma (B., Kiermaier, Kohnert, Laue, 2014) - 1) $S, T \subseteq {V \brack k}$ (N, t)-partitionable, disjoint - $\Rightarrow S \cup T(N,t)$ -partitionable - 2) $S \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$ (N, t)-partitionable, $\mathcal{T} \subseteq \begin{bmatrix} W \\ s \end{bmatrix}$ (N, r)-partitionable $\Rightarrow S \star \mathcal{T} (N, t + r + 1)$ -partitionable also valid for \star_e and $\star_{\tilde{e}}$ $$\mathcal{S} \star \mathcal{T} := \{ \Gamma \star \Delta \mid \Gamma \in \mathcal{S}, \Delta \in \mathcal{T} \}$$ there exist decompositions of ${V \brack k}$ into unions of joins corresponding to generalized q-Vandermonde identities $$\begin{bmatrix} \mathbb{F}_q^{10} \\ 3 \end{bmatrix} = \begin{bmatrix} \mathbb{F}_q^3 \\ 0 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^6 \\ 3 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^4 \\ 1 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^5 \\ 2 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^5 \\ 2 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^4 \\ 1 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^6 \\ 3 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^3 \\ 0 \end{bmatrix}$$ $$\begin{bmatrix} \mathbb{F}_q^{10} \\ 3 \end{bmatrix} = \begin{bmatrix} \mathbb{F}_q^3 \\ 0 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^6 \\ 3 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^4 \\ 1 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^5 \\ 2 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^5 \\ 2 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^4 \\ 1 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^6 \\ 3 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^3 \\ 0 \end{bmatrix}$$ $$\downarrow_{\mathsf{LS}_q[N](2,3,6)}$$ $$\begin{bmatrix} \mathbb{F}_q^{10} \\ 3 \end{bmatrix} = \begin{bmatrix} \mathbb{F}_q^3 \\ 0 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^6 \\ 3 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^4 \\ 1 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^5 \\ 2 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^5 \\ 2 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^4 \\ 1 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^6 \\ 3 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^3 \\ 0 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^3 \\ 0 \end{bmatrix}$$ $$\downarrow LS_q[N](2,3,6)$$ $$\begin{bmatrix} \mathbb{F}_q^{10} \\ 3 \end{bmatrix} = \begin{bmatrix} \mathbb{F}_q^3 \\ 0 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^6 \\ 3 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^4 \\ 1 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^5 \\ 2 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^5 \\ 2 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^4 \\ 1 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^6 \\ 3 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^3 \\ 0 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^3 \\ 0 \end{bmatrix}$$ $$\downarrow \qquad \qquad \downarrow$$ $$LS_q[N](2,3,6) \xrightarrow{\text{der}} LS_q[N](1,2,5)$$ $$\begin{bmatrix} \mathbb{F}_q^{10} \\ 3 \end{bmatrix} = \begin{bmatrix} \mathbb{F}_q^{3} \\ 0 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^{6} \\ 3 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^{4} \\ 1 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^{5} \\ 2 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^{5} \\ 2 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^{4} \\ 1 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^{6} \\ 3 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^{3} \\ 0 \end{bmatrix}$$ $$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$ $$\begin{bmatrix} \mathbb{F}_q^{10} \\ 3 \end{bmatrix} = \begin{bmatrix} \mathbb{F}_q^{3} \\ 0 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^{6} \\ 3 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^{4} \\ 1 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^{5} \\ 2 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^{5} \\ 2 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^{4} \\ 1 \end{bmatrix} \cup \begin{bmatrix} \mathbb{F}_q^{6} \\ 3 \end{bmatrix} \star_{\tilde{1}} \begin{bmatrix} \mathbb{F}_q^{3} \\ 0 \end{bmatrix}$$ $$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow
\qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$$ there exist decompositions of ${V \brack k}$ into unions of joins corresponding to generalized q-Vandermonde identities ### Theorem (B., Kiermaier, Kohnert, Laue, 2014) the existence of $LS_q[N](2,3,6)$ implies the existence of $LS_q[N](2,k,n)$ for $n \ge 10$, $n \equiv 2 \mod 4$, $n-3 \ge k \ge 3$, $k \equiv 3 \mod 4$ there exist decompositions of ${V \brack k}$ into unions of joins corresponding to generalized q-Vandermonde identities $$\mathsf{LS}_q[N](2,3,10) \qquad \qquad \mathsf{generalized} \ q\text{-Vandermonde identities}$$ $$(N,2) = (N,2) \cup (N,$$ ### Theorem (B., Kiermaier, Kohnert, Laue, 2014) the existence of $LS_q[N](2,3,6)$ implies the existence of $LS_q[N](2,k,n)$ for $n \ge 10$, $n \equiv 2 \mod 4$, $n-3 \ge k \ge 3$, $k \equiv 3 \mod 4$ \Rightarrow infinite series for N=2 and $q \in \{3,5\}$ finally... the world of combinatorial q-analogs ### finally... the world of combinatorial q-analogs