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take any incidence structure on sets,

replace sets by vector spaces,
and cardinalities by dimensions
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take a combinatorial design ...

(V,B)is a t-(n, k,\) deS|gn
iff V= {1,...,n}, BC (}) blocks
VTE(D;HBeB|TgBH:A

.. and consider its g-analog

(V,B) is a t-(n, k, \; q) design
iff V = F, B C [/] blocks

number of blocks |B| = )\[f]"
VT e[V {BeB|TCB} =2

[,

trivial design B = [}] with A = [}~ J
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a first example ...

verification is quite uncomfortable ...
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. but the incidence matrix makes it easy

row sum is A = 3 for all rows
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— |gB:={gB|BeB}

isomorphism class of B

= orbit
A(B) :={gB| g € A}
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now, group actions come into play ...

extend action of A=Aut(L(V))
to subsets of L(V) by

isomorphism class of B — |gB:=1{eB|BCcB}
= orbit
A(B) :={gB| g € A}
/ automorphism group of B
= stabilizer

Orbit-Stabilizer-Theorem Az ={gecA|lgB=DB}

A(B) — A/Ag "
1

AgB = gABg"~
G:AB:Agb’igGNA(G)

= candidates for possible
automorphism groups

can be reduced to
different conjugacy classes

= the normalizer of
automorphims groups gives
hints for classification issues
(several papers by Laue)
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our 1-(4,2,3;2) design admits

G

i OO
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OO—HO ~ O
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OO0 ~ O
OO0 ~ O
OOO ™ ~Orrr

1
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1
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0100
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1100
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0011
11101
1101
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0111
1111
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Sym(4) as group of automorphisms

~

our 1-(4,2,3;2) design admits

G

A OO
A OO

A ~ OO

1

1

1

—HOOO ~—HHHO
—OOO ~ O
—OOO ~ O
OO0 ~ O
OO0 ~ O
OO0 ~Or—rir
OOr—HO ~ O
OOr—HO ~ O i
OO—O ~Or—irir
OO0 ~ O
OO0 ~ O
OOOr ~Or—driri

1

1

1

1

1

1

1

1

100011 1 1
0100
0010

0001

1100
1010
1001

01101
0101
0011

11101
1101
1011

0111

1111




our 1-(4,2,3;2) design admits
G ~ Sym(4) as group of automorphisms

000O0O0OO0OODOOOZ1TT1T 121|211
0000OO0OO0O1IT1I1O0O0O01IT1T1I1
0001110000O0O0(2 11
111000000000/111
011011011111/000
101101111011(011
110111101101(101
1111101101101 10

10001 1 1

0100 111

i SRR

1

1100 1 1 1 =

1010 1 1 1

1001 1 1 1 0 3

01101 1 1

01011 1 1 1 condensed

0011 1 1 1 .. .

11101 1 1 G-incidence matrix

%(1)(1)% 1 1 1 1 1 1 used to represent

0111 1 1 1 design admitting G

1111 111
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Singer cycle
S(nv q) = (o) ZFZ"

some subgroups of GL(n, q) ...



Singer cycle Frobenius automorphism
S(n,q)=(0)~Fg F(n,q)=(¢)~Aut(Fgr/Fq)

some subgroups of GL(n, q) ...



normalizer of
a Singer cycle

N(n,q)= (o, ®)

X
Singer cycle Frobenius automorphism

S(n, q)=(0)=Fg F(n,q)=(¢)=Aut(Fqr/Fq)

some subgroups of GL(n, q) ...



if £ divides n then (o, ¢*) ~ N(n/¢, q°)
if n prime then N(n, g) is maximal in GL(n, q)
N(n, q) is self-normalizing in GL(n, q)

normalizer of
a Singer cycle

N(n,q)= (o, ®)

X
Singer cycle Frobenius automorphism
S(n,q)=(0)~Fg F(n,q)=(¢)~Aut(Fgr/Fq)

some subgroups of GL(n, q) ...



if £ divides n then (o, ¢*) ~ N(n/¢, q°)
if n prime then N(n, g) is maximal in GL(n, q)
N(n, q) is self-normalizing in GL(n, q)

normalizer of

) Corollary
a Singer cycle for primes n and g
N(n, q)=(c, $) different t-(n, k, \; q) designs

‘ admitting N(n, q) as a group of

automorphisms are non-isomorphic
X

Singer cycle Frobenius automorphism
S(n,q)=(0)~Fg F(n,q)=(¢)~Aut(Fgr/Fq)

some subgroups of GL(n, q) ...
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Theorem (Suzuki, 1990)
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N(n, g) as a group of automorphisms
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Theorem (Abe, Yoshiara, 1993)
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Thomas constructed the first non-trivial design
extended by Suzuki to an infinite series for all g

Sr(T) = <b0...br,1 ’ b,‘ € T,O§i< r>
{S(T)| Te3]}

=
I

Theorem (Suzuki, 1990)
for n > 7 with (n,4) =1 the set B>

defines a 2-(n, 3, B]q; q) design admitting
N(n, g) as a group of automorphisms

under which conditions does B,
define a 2-(n,r 4+ 1, [r;rl]q; q) design?

Theorem (Abe, Yoshiara, 1993)
the set B, is no design for g =2

and4<r+1<n<15
except for the pair r=3, n=7

conjecture: B3 is the dual of By for n =7 and all g
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Theorem (Kramer, Mesner, 1976)
there exists a t-(n, k, \; q) design

iff
3 0-1 solution x =[..., xk,...]* of

[V]9 T |- C'I.'K XK | =

Cee = (Crx) with (= ((T,K)



Theorem (Kramer, Mesner, 1976)
there exists a t-(n, k, \; q) design
admitting G < Aut(L(V))

as a group of automorphisms
iff
3 0-1 solution x =[..., xk,...]* of

G(K) €G\[Y]

G\[V]36(T) | 5 || =

Coh=(CT)  with (=) 4T, K')

K'eG(K)



we consider Suzuki's design...



we consider Suzuki's design...
2-(7,3,7;2)



we consider Suzuki's design...
2-(7,3,7;2)

plain incidence matrix (>3
2667 x 11811



we consider Suzuki's design...
2-(7,3,7;2)

plain incidence matrix (>3
2667 x 11811

prescribed group of automorphisms
normalizer of a singer cycle N(7,2)
of order 889



we consider Suzuki's design...
2-(7,3,7;2)

plain incidence matrix (>3
2667 x 11811

prescribed group of automorphisms

normalizer of a singer cycle N(7,2)
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we consider Suzuki's design...
2-(7,3,7;2)

plain incidence matrix (>3
2667 x 11811

prescribed group of automorphisms
normalizer of a singer cycle N(7,2)
of order 889

531323122321120

MWP=1120132533321221
120322122135430
T T T



we consider Suzuki's design...
2-(7,3,7;2)

plain incidence matrix (>3
2667 x 11811

prescribed group of automorphisms
normalizer of a singer cycle N(7,2)
of order 889

N(7,2) _
23

— = = O
NN W
O O
W = W
N W N
NN W
—= Ol =
N W N
N W N
= W W
W NN
—01 = =
BN R
w NN
o = O

19 solutions (non-isomorphic)
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Theorem (Miyakawa, Munemasa, Yoshiara, 1995)
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a particular class of designs ...

t-(n, k, \; q) des gn B transitive
iff |A3\\[ ]| =

Theorem (Miyakawa, Munemasa, Yoshiara, 1995)
B non-trivial transitive t-(n, k, \; q) design, t > 2

—if n=06 then g =1 mod 3 and S(6,q) £ Ag < N(6, q)
— if n prime then either Az = S(n, q) or Az = N(n, q)

= Suzuki's design is transitive

Theorem (Miyakawa, Munemasa, Yoshiara, 1995)
[A, number of non-isom. 2-(7,3, ); q) designs B with Az = N(n, q)]

g =2:[3,2], [5,14], [7,19], [10,30], [12,90], [14,55],
[\, 0] for A = 1,2,4,6,8,9,11,13, 15
qg=3:15,22], [\,0] for A=1,2,3,4
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further computer results for the binary field ...

Theorem (B., Kerber, Laue, S. Braun, 2005-2015)

G

1Sl

A

N(8,2)
N(4,22)
N(11,2)
N(10,2)
N(9,2)

53x 109
105x 217
31x2263
20x 633
11x725

11x177
31x529
28 x 408
40 x 460
15x217

13x231

15x105
3x15

21 x 93
77 x 155

11

11, 15

245, 252

15, 30, 45, 60, 75, 90, 105, 120

21, 63, 84, 126, 147, 189, 210, 252, 273, 315,
336, 378, 399, 441, 462, 504, 525, 567, 588, 630
651, 693, 714, 756, 777, 819, 840, 882, 903, 945
966, 1008, 1029, 1071, 1092, 1134, 1155

1197, 1218, 1260, 1281, 1323

63

21, 22, 42, 43, 63

21, 35, 56, 70, 91, 105, 126, 140, 161, 175, 196,
210, 231, 245, 266, 280, 301, 315

7, 14, 49, 56, 63, 98, 105, 112, 147, 154, 161,
196, 203, 210, 245, 252, 259, 294, 301, 308

0, 12, 14,
,7,8,9, 10, 11, 12, 13, 14, 15




.. also for g =3, 4 and 5

[eA

41 x 977
13 x 121
25 X 76

93 x 234
51 x 150
91 x 280

51 x 161
57 x 229

53 x 248

A
52, 104, 156

16
8, 16, 20
8, 12, 16, 20

15, 35
10, 25, 30, 35

78
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further constructions .... Theorem (Suzuki, 1989)
(V,B) t-(n, k, \; q) design
i+j<t Pelf]. Hel, ]

n—j—
;»|{BeB|P<B<H}|—A[k'

supplemented

t-(n, k, \; q)

(i=t—1,j=0) reW Wad

(t—1)-(n—1,k—1,Xq)

dual
(i=0,j=t,-1)




further constructions .... Theorem (Suzuki, 1989)
(V,B) t-(n, k, \; q) design
i+j<t Pelf]. Hel, ]

n—j—
;»|{BeB|P<B<H}|—A[k'

supplemented

(n,k,\; q)
(i=t—1,j=0) reduced derlved
(t—l)(nm:ii} t—l)(n—lﬁk—l,x;q)
dual residual
(i=0,j=t,-1) (i=t—1,j=1)

nkl

(t—1)-(n—1,k N1 e 1,q)



Theorem (Kiermaier, Laue, 2014)
the existence of designs for derived

and residual parameters implies
the existence of a design
for the reduced parameters




2-(9,3,21;2)
by computer

2-(9,4,441;2)

Theorem (Kiermaier, Laue, 2014)
the existence of designs for derived

and residual parameters implies
the existence of a design
for the reduced parameters




2-(9,3,21;2)

T der

by computer 3-(10,4,21;2)

l res

2-(9,4,441;2)

Theorem (Kiermaier, Laue, 2014)
the existence of designs for derived

and residual parameters implies
the existence of a design
for the reduced parameters




2-(9,3,21;2) 2-(10,4,1785;2)

der red
by computer 3-(10,4,21;2)

l res

2-(9,4,441;2)

Theorem (Kiermaier, Laue, 2014)
the existence of designs for derived

and residual parameters implies
the existence of a design
for the reduced parameters




Corollary (Kiermaier, Laue, 2014)
There exist designs with parameters
2-(8,4, \;2) for A = 63,84,147,168, 189, 252,273,294

2-(10,4, \; 2) for A = 1785,1870, 3570, 3655, 5355
2-(8,4,91);3) for A =5,6,7,...,60

2-(9,3,21;2) 2-(10,4,1785;2)
der red
by computer 3-(10,4,21;2)
i res
2-(9,4,441;2)

Theorem (Kiermaier, Laue, 2014)
the existence of designs for derived
and residual parameters implies

the existence of a design
for the reduced parameters




further consequences?



take Suzuki's design

further consequences?



further consequences?

take Suzuki's design



further consequences?

take Suzuki's design



further consequences?

take Suzuki's design



take Suzuki's design

der
ldual 3—(8 4, [i , C])

red

Corollary
there exists a family of

(¢°-1)(¢°~1).
28,4 (i1 1 9)

designs for all prime powers g

further consequences?




(t—1)-(2t+3,t+1, X qt?*l )
71 (t—1)-(2t +3,t, X q)




t-(2t +4,t+ 1, X; q)

red res der
t+5_ t+3
(t—1)-(2t +4,t+1, /\‘7 = L.q) (t—1)-(2t+3,t + 1,24 _zl,q) (t— 1)-(2t + 3, t, A q)
dual
_1)- (@3 -1)(qt*5—1). ) (@2 -1)(qt*3-1).
der (t—1)-(2t+4,t+2, A @@ -] 1 q) der (t—1)-(2t+3,t+2, A @ D@D ;1 q)
gtt5 1. gtt3_1.
(27:\57:\2)\71.(;) t—(Zt\4.t\2.)\7q2 4
red
+5_ t+6 t+3 t+5 t+6
t—1)-(2t+5,t+2, A1) dual t—1)-(2t +5,t 43, A0 D@2 D(gT 1)
(6= 12645 e+ @01y, 9 (6= 12t +5t+ @@ e 9
der res
gt 1)t 1)

t-(2t + 6, t ERD R CAREY (Mt )
(¢2—1)(¢3—1)

redl
:+5 — (et —1)(gtHT 1)
—1)-(2 )\ H
(e =12t +6,t43, e




t-(2t +4,t+ 1, A\; q)

d res der
(t—1)-(t+4,t 11, Aq“: [q) (t—1)-(2t +3,£ 41, >\‘7H311 (t = 12t + 3,1, Ai q)
dual
g3 1)t t5— 42 1y t43
(t—1)-(2t+4,t+2, AWW) der (tfl)-(2t+3,t+2,A%;q)
2t +5,t+2, ) "L_, L. q) (2t + 4, ¢+ 2, /\"‘i_,r'j‘ )
red
— (a5 —1)(q't0—1) dual T (¢tT3 1) (g5 —1)(gt+6 1)
(t 1) (2t +5,t+2, 24 @D 1 q) (t—1)-(2t+5,t+3, A )@ D] 1 q)
der res
(2t + 6, £ 43, A b q)
red
1) (@5 1)@ 1)1
(£ = D-t + 6, ¢ 4 3, A T MG ) )
Corollary computer
There exist designs with parameters results
2-(10,4,85A;2), 2-(10,5,765); 2), for t — 3
2-(11,5,6205); 2), 2-(12,6,423181);2) and g = 2

for A = 7,12,19, 21,22, 24,31, 36, 42, 43, 48, 49, 55, 60, 63
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Theorem (Itoh, 1998)
there is a family of 2-(n¢, 3, ¢°

q";_Sl_l; q) designs

admitting SL(¢, g") as group of automorphisms
forg>2,¢>3, n=5mod6(qg—1)
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Theorem (Itoh, 1998)
there is a family of 2-(n¢, 3, ¢°

q";_Sl_l; q) designs

admitting SL(¢, g") as group of automorphisms
forg>2,¢>3, n=5mod6(qg—1)




Itoh's infinite series of designs ...

n S n, T
S et el : 0 0

o | X | VY | z

2-(n,3, \; q) designs admitting S(n, q)
can be extended to

2-(nf,3, \; q) designs admitting SL(¢, g")
if X is appropriate

Theorem (Itoh, 1998)
there is a family of 2-(n¢, 3, ¢°

q";_Sl_l; q) designs

admitting SL(¢, g") as group of automorphisms
forg>2,¢>3, n=5mod6(qg—1)
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for some integer s > 0, t € {0,1} if 3|n and t = 0 otherwise



extension possible if
A=q(q+1)(¢° — 1)s +q(q®> — 1)t

for some integer s > 0, t € {0,1} if 3|n and t = 0 otherwise

for £ >3, n=5mod 6(qg — 1)
Suzuki's supplemented design
has index value A of required form



further results from
Itoh's construction?



qg=2: A=42s5+ 6t
qg=3: A\=312s + 24t

further results from
Itoh's construction?



computer constructions

of designs admitting S(n, q)
2-(8,3,21;2) *¥ 2.(8,3,42;2)
2-(9,3,42;2)

2-(9,3,43;2) = 2-(9,3,84;2)
2-(10,3,45;2) *¥ 2.(10,3,210;2)
2-(13,3,42s;2) for 1 <5< 25
2-(8,3,52;3) = 2-(8,3,312;3)

further results from
Itoh's construction?

qg=2: A=42s5+ 6t
qg=3: A\=312s + 24t



computer constructions

of designs admitting S(n, q)
2-(8,3,21;2) *® 2-(8,3,42;2)
2-(9,3,42;2)

2-(9,3,43;2) 2 2-(9,3,84;2)
2-(

2-(

2-(

qg=2: A=42s5+ 6t
qg=3: A\=312s + 24t

-(10,3,45;2) = 2-(10,3,210;2)
-(13,3,42s;2) for 1<s<25

-(8,3,52;3) = 2-(8,3,312;3) Corollary

there exist families of designs
admitting SL(¢,q") for ¢ >3
2-(8¢,3,42;2)
9¢,3,425;2) for 1 <s <2
10¢,3,210; 2)

further results from
Itoh's construction?

2-(
2-(
2(13(/3425 2) for 1 <s<25
2-(8¢,3,312;3)
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= t-(n, k,1; q) design
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trivial g-Steiner systems



Sq(t, k, n) g-Steiner system
= t-(n, k,1; q) design

Theorem

Sq(1, k, n) exists if and only if k divides n

trivial g-Steiner systems

existence of non-trivial
g-Steiner systems (t > 1)
was long-standing issue ...



Theorem (B., Etzion, Ostergard, Vardy, Wassermann, 2012)

g-Steiner systems do exist




Theorem (B., Etzion, Ostergard, Vardy, Wassermann, 2012)

g-Steiner systems do exist

S5(2,3,13)



Theorem (B., Etzion, Ostergard, Vardy, Wassermann, 2012)

g-Steiner systems do exist

$2(2,3,13)
automorphism group N(13,2)
of order 13- (213 — 1) = 106483

consisting of 15 orbits

of full length 106483
taken out of 25572
possible orbits

> 1050 disjoint solutions
all non-isomorphic

solved with Knuth's dancing links
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g-analog of the
Fano plane S(2,3,7)

S2(2,3,7)?

it would have size 381

replacing “exactly”
by “at most”

yields g-packing \

(subspace codes) best known size is 329

(B., Reichelt, 2014)
(Liu, Honold, 2014)



g-analog of the
Fano plane S(2,3,7)

S2(2,3,7)?

it would have size 3’81

/

replacing “exactly” ’ large gap
/

by “at most”

/
yields g-packing \ /

best known size is 329
(subspace codes) )
(B., Reichelt, 2014)
(Liu, Honold, 2014)
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{1}
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of each conjugacy class
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consider only one subgroup
of each conjugacy class

exclude groups step by step



what is the automorphism group?
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A= Aut(L(V))
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{1}
consider only one subgroup
of each conjugacy class

exclude groups step by step



what is the automorphism group?
what if $5(2,3,7) does exist?
A= Aut(L(V))
1) choose representative G *
of some conjugacy class of A

2) solve (g x = [1,...,1]*

3) no solution _

{1}
consider only one subgroup
of each conjugacy class

exclude groups step by step



what if S»(2,3,7) does exist?

1) choose representative G
of some conjugacy class of A

2) solve (g x = [1,...,1]*

3) no solution

= subgroups S with
G<S<A

and their conjugacy classes
cannot occur as

groups of automorphisms

exclude groups step by step

what is the automorphism group?

A= Aut(L(V))

{1}
consider only one subgroup
of each conjugacy class



systematic elimination of
subgroups (p-groups first)
and conjugacy classes yields...



systematic elimination of
subgroups (p-groups first)

and conjugacy classes yields...

Theorem (B., Kiermaier, Naki¢, 2014)
the automorphism group of S»(2,3,7) is either trivial or
generated by one of the following matrices

0100000
1000000
0001000
0010000
0000010
0000100
0000001

order 2

0100000
1100000
0001000
0011000
0000010
0000110
0000001

order 3

0100000
1100000
0001000
0011000
0000100
0000010
0000001

order 3

1100000
0110000
0010000
0001100
0000110
0000011
0000001

order 4




we consider collections
of disjoint designs ...



we consider collections
of disjoint designs ...
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is a partition of [‘:] into N
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designs
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disjoint t-(n, k, [Z_t]q/N, q)
designs




N = 2: halving

t-(n, k, [;:;]q/z; q)

we consider collections
of disjoint designs ...

an LS4[N](t, k, n) large set
is a partition of [‘:] into N

L. Tt .
disjoint t-(n, k, [Z_t]q/N, q)
designs




N = 2: halving

t-(n, k, [;:;]q/z; q)

lSUPP

t-(n, k, [Z:ﬁ]q/% q)

we consider collections
of disjoint designs ...

an LS4[N](t, k, n) large set
is a partition of [‘:] into N

L. Tt .
disjoint t-(n, k, [Z_t]q/N, q)
designs




N = 2: halving

t-(n, k, [;:;]q/z; q)

lsupp

t-(n, k, [Z:ﬁ]q/% q)

LSq[2](t, k, n)

/////'

an LS4[N](t, k, n) large set
we consider collections is a partition of [} ] into N
of disjoint designs ... disjoint t-(n, k, [Z:ﬂq/N; q)
designs




N = 2: halving examples
LS3[2](2, 3,6)
t-(n, k, [Z:i] q/2; ) LSs[2](2,3,6)

lSUPP /

t-(n, k, [Z:ﬁ]q/% q)

LSq[2](t, k, n)

an LS4[N](t, k, n) large set
we consider collections is a partition of [} ] into N
of disjoint designs ... disjoint t-(n, k, [Z:ﬂq/N; q)
designs




N = 2: halving examples
LS3[2](2, 3,6)
t-(n, k, [Z:i] q/2; ) LSs[2](2,3,6)

lsupp /

t-(n, k, [Z:ﬁ]q/% q)

LSq[2](t, k, n)

an LS4[N](t, k, n) large set
we consider collections is a partition of [} ] into N
of disjoint designs ... disjoint t-(n, k, [Z:ﬂq/N; q)
designs

Theorem (B., Kohnert, Ostergard, Wassermann, 2014)

large sets LS4 [N](t, k, n) for N > 2 do exist




N = 2: halving examples
LS3[2](2, 3,6)
t-(n, k, [Z:i] q/2; ) LSs[2](2,3,6)

lsupp /

t-(n, k, [Z:ﬁ]q/% q)

LSq[2](t, k, n)

an LS4[N](t, k, n) large set
we consider collections is a partition of [} ] into N
of disjoint designs ... disjoint t-(n, k, [Z:ﬂq/N; q)
designs

Theorem (B., Kohnert, Ostergard, Wassermann, 2014)

large sets LS4 [N](t, k, n) for N > 2 do exist
LS([3](2,3,8)
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§C [‘,{] is (N, t)-partitionable iff
there is a partition By,...,By of S
such that VT € [\t/] and Vi, j

{B € B;|TCB}Y=|{B€B;|TCB}|
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consider generalization of large sets ...

large set LS4[N](t, k, n)
for S = [}]

S < [Y] is (N, t)-partitionable iff
there is a partition By,...,By of S number can be different
such that VT € [Y] and Vi, j o for different T

{B e Bi|TCB}|=|{Be€B;| TCB}




consider generalization of large sets ...

idea for recursive construction of large sets

large set LS4[N](t, k, n)
for S = [}]

S Q’ [‘:] is (N, t)-partitionable iff
there is a partition By,...,By of S number can be different
such that VT € [Y] and Vi, j o for different T

{B e Bi|TCB}|=|{Be€B;| TCB}
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are also (N, *)-partitionable

large set LS4[N](t, k, n)
for S = [}]

S Q’ [‘:] is (N, t)-partitionable iff
there is a partition By,...,By of S number can be different
such that VT € [Y] and Vi, j o for different T

{B e Bi|TCB}|=|{Be€B;| TCB}




consider generalization of large sets ...

idea for recursive construction of large sets
— union and “joins” of (N, x*)-partitionable sets
are also (N, x)-partitionable

— decompose [\,:] into union of joins
of (N, x)-partitionable sets

large set LS4[N](t, k, n)
for S = [}]

S Q’ [‘:] is (N, t)-partitionable iff
there is a partition By,...,By of S number can be different
such that VT € [Y] and Vi, j o for different T

{B e Bi|TCB}|=|{Be€B;| TCB}




consider generalization of large sets ...

idea for recursive construction of large sets
— union and “joins” of (N, x*)-partitionable sets
are also (N, x)-partitionable

— decompose [\,:] into union of joins
of (N, x)-partitionable sets
= [\,:] is (N, x)-partitionable

large set LS4[N](t, k, n)
for S = [}]

’
S C [‘:] is (N, t)-partitionable iff
there is a partition By,...,By of S
such that VT € [Y] and Vi, j —
{B € B| TCBI|=|{B ¢ B;| TCB}|

number can be different
" for different T




consider generalization of large sets ...

idea for recursive construction of large sets
— union and “joins” of (N, x*)-partitionable sets
are also (N, x)-partitionable

— decompose [\,:] into union of joins
of (N, x)-partitionable sets
= [\,:] is (N, x)-partitionable = large set

large set LS4[N](t, k, n)
for S = [}]

’
S C [‘:] is (N, t)-partitionable iff
there is a partition By,...,By of S
such that VT € [Y] and Vi, j —
{B € B| TCBI|=|{B ¢ B;| TCB}|

number can be different
" for different T
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MFxA [ *e A

s i
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X, Y contain 0 at all pivot row positions of I, Id identity matrix
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canonical generator matrices
(columns form base)

A r‘keA F*éA
M X rMx|vy LL
JAN Id e x|
JAN JAN
e

X, Y contain 0 at all pivot row positions of I, Id identity matrix

SxT ={[xA|TeS,AeT}



identify subspaces with
canonical generator matrices
(columns form base)

A r*eA r*gA
M X rMxX|y LL
JAN Id e x|
JAN JAN
e

X, Y contain 0 at all pivot row positions of I, Id identity matrix

Lemma (B., Kiermaier, Kohnert, Laue, 2014)
1) S, T C [Y] (N, t)-partitionable, disjoint

= SUT (N, t)-partitionable

SxT ={[xA|TeS,AeT}



identify subspaces with
canonical generator matrices
(columns form base)

MFxA [ *e A [xz A
M X rNMxi|y LL
JAN Id e | x |e
JAN JAN
e

X, Y contain 0 at all pivot row positions of I, Id identity matrix

Lemma (B., Kiermaier, Kohnert, Laue, 2014)
) S, T C [Y] (
= SUT (N

(N, t)-partitionable, disjoint

, t)-partitionable

2) S C [Y] (N, t)-partitionable, 7 C [¥] (N, r)-partitionable
= S*T (N, t+ r+ 1)-partitionable

SxT ={[xA|TeS,AeT}



identify subspaces with
canonical generator matrices
(columns form base)

A [ %xe A %z A
M X rMxX|y LL
JAN Id e x|
JAN JAN
e

X, Y contain 0 at all pivot row positions of I, Id identity matrix

Lemma (B., Kiermaier, Kohnert, Laue, 2014)
1) S, T C [Y] (N, t)-partitionable, disjoint
= SUT (N, t)-partitionable

2) S C [Y] (N, t)-partitionable, 7 C [*] (N, r)-partitionable
= S*T (N, t+ r+ 1)-partitionable

also valid for x. and *g

SxT ={[xA|TeS,AeT}
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there exist decompositions of [\;]
into unions of joins corresponding to
generalized g-Vandermonde identities

(N, 2) (N, 2)

3 = 3

LS4[N](2,3,6) =2 LS4 [N](1,2,5)

H



there exist decompositions of [\;]
into unions of joins corresponding to
generalized g-Vandermonde identities

(N, 2) (N,1) (N,1) (N, 2)

HRGE F‘Iﬂ g6 [Ff} o3 [l ] o]

LS4[N](2,3,6) =2 LS4 [N](1,2,5)



there exist decompositions of [\;]
into unions of joins corresponding to
generalized g-Vandermonde identities

(N,2) (N, 1) (N, 1) (N,2)

) 5] [ [ [ [ 5
l i i

LS4[N](2,3,6) =28 LS4[N](1,2,5) =2+ LS, [N](0,1,4)



there exist decompositions of [\;]
into unions of joins corresponding to
generalized g-Vandermonde identities

(N, 2) (N, 0) (N,1) (N,1) (N,0) (N, 2)

) 5] ][5 [ [ 3
l i i

LS4[N](2,3,6) =28 LS4[N](1,2,5) =2+ LS, [N](0,1,4)



there exist decompositions of [\;]
into unions of joins corresponding to
generalized g-Vandermonde identities

(N,-1) (N,2) (N, 0) (N,1) (N,1) (N,0) (N, 2) (N, -1)

) 5] ][5 [ [ 5
l i i

LS4[N](2,3,6) =28 LS4[N](1,2,5) =2+ LS, [N](0,1,4)



there exist decompositions of [\;]
into unions of joins corresponding to
generalized g-Vandermonde identities

(N,2) (N,2) (N,2) (N,2)
1 1 1 1
/N /N /N /N

(N,-1) (N,2) (N, 0) (N,1) (N,1) (N,0) (N, 2) (N, -1)

) 5] ][5 [ [ 5
l i i

LS4[N](2,3,6) =28 LS4[N](1,2,5) =2+ LS, [N](0,1,4)



there exist decompositions of [\;]
into unions of joins corresponding to
generalized g-Vandermonde identities

(N,2) = (N, 2) U (N, 2) U (N, 2) U (N, 2)
1 1 1 1
join join join join

/N /N /N /N

(N,-1) (N,2) (N, 0) (N,1) (N,1) (N,0) (N, 2) (N, -1)

) 5] ][5 [ 5
l i i

LS4[N](2,3,6) =28 LS4[N](1,2,5) =2+ LS, [N](0,1,4)



there exist decompositions of [\;]
into unions of joins corresponding to

LS4[N](2,3,10) generalized g-Vandermonde identities
(N,2) = (N, 2) U (N, 2) U (N, 2) U (N, 2)
1 1 1 1
join join Jjoin join
/N /N /N /N

(N,-1) (N,2) (N, 0) (N,1) (N,1) (N,0) (N, 2) (N, -1)

) 5] ][5 [ 5
l i i

LS4[N](2,3,6) =28 LS4[N](1,2,5) =2+ LS, [N](0,1,4)



there exist decompositions of [\;]
into unions of joins corresponding to

LS4[N](2,3,10) generalized g-Vandermonde identities

T

(N,2) = (N, 2) U (N, 2) U (N, 2) U (N, 2)
1 1 1 1
join join join join

/N SN SN SN

(N, -1) (N, 2) (N, 0) (N,1) (N,1) (N,0) (N, 2) (N, -1)
FIO F3 F6 F4 FS FS F4 F6 F3
q | — q - q q - q q - q q - q
)l 5] ) (3]0 B[] o 5 6]

l i i

LS4[N](2,3,6) =28 LS4[N](1,2,5) =2+ LS, [N](0,1,4)

Theorem (B., Kiermaier, Kohnert, Laue, 2014)
the existence of LS4[N](2,3,6) implies the existence of

LS4[N](2, k, n) for n>10, n=2 mod 4, n—3 > k>3, k=3 mod 4




there exist decompositions of [\;]
into unions of joins corresponding to

LS4[N](2,3,10) generalized g-Vandermonde identities

T

(N,2) = (N, 2) U (N, 2) U (N, 2) U (N, 2)
1 1 1 1
join join join join

/N SN SN SN

(N, -1) (N, 2) (N, 0) (N,1) (N,1) (N,0) (N, 2) (N, -1)
FIO F3 F6 F4 FS FS F4 F6 F3
q | — q - q q - q q - q q - q
)l 5] ) (3]0 B[] o 5 6]

l i i

LS4[N](2,3,6) =28 LS4[N](1,2,5) =2+ LS, [N](0,1,4)

Theorem (B., Kiermaier, Kohnert, Laue, 2014)
the existence of LS4[N](2,3,6) implies the existence of

LS4[N](2, k, n) for n>10, n=2 mod 4, n—3 > k>3, k=3 mod 4
= infinite series for N =2 and q € {3,5}
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finally... the world of combinatorial g-analogs

partial spread
constant dimension code -~ 1-(n, k,<1;q)

q packing de5|gn t-(n, k,<1;q)
t-(n, k, <A q) multiset arc
\ arc = dual of — = linear code
(n,n—1,<X;q)

g-covering design

t-(n, k2 q) blocking set = dual of

= complement of 1-(n,n—=1,>X; q)
t-(n b, <[;74] ~ A )

vector space partition

design
t-(n, k, X; q) - t-wise balanced design _ 1-(n, K, 1; q)
t_(nv K7 A; q)
parallelism
(k—1)-parallelism disjoint 1-(n,2,1; q)
large set e disjoint 1-(n, k, 1; q)
disjoint t-(n, k, \; q)
spread

(t—1, k—1)-spread (k—1)-spread __~>1-(n,2,1;q)
g-Steiner system — 1-(n, k, 1; q)
t“("v k7 1 q)



