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Hadamard difference sets and corresponding regular partial
difference sets in groups of order 144

There are 197 groups of order 144. Solving the problem of difference set
(DS) existence in these groups has not been completed yet.

In focus: (144,66,30) DSs construction by the new method we here
describe.

We also show the construction of regular partial difference sets (PDSs)
and strongly regular graphs (SRGs) with parameters (144,66,30,30) and
(144,65,28,30).
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Basic notions and facts

A (v , k,λ) difference set ∆ is a subset of size k in a group G of order v
with the property that the multiset of products

{
xy−1 | x , y ∈ ∆, x 6= y

}
contains exactly λ copies of each non-identity element of G .

The development of a difference set ∆ ⊆ G is the incidence structure

dev∆ = (G , {∆g | g ∈ G}).

It relates difference sets (DSs) to symmetric designs (SDs) in the following
way:
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Theorem
Let ∆ ⊆ G be a (v , k,λ) difference set. Then dev∆ is a symmetric
(v , k,λ) design with G ≤ Aut(dev∆). Group G acts regularly on points
and blocks of dev∆.

Theorem
Let D = (P ,B) be a symmetric (v , k,λ)-design with regular
automorphism group G. Then, for any point p ∈ P and any block B ∈ B,
the set ∆ = {g ∈ G | pg ∈ B} is a (v , k,λ) difference set in G .
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Hadamard difference sets and product construction

Parameter triples of the form

(4u2, 2u2 − u, u2 − u), u ∈N, (1)

determine the Hadamard family of DSs and/or the Menon family of SDs.

It is well-known that two Hadamard difference sets (HDSs) yield a new
HDS by the ’product’method according to the following theorem.
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Theorem (Product method, Menon)
Let G = G1 × G2 be the direct product of groups G1 and G2. If difference
sets with parameters of type (1) exist in G1 and G2 for u = u1 and u = u2
respectively, then group G contains a difference set with parameters (1)
for u = 2u1u2.

Denoting by ∆1 ⊆ G1 and ∆2 ⊆ G2 initial difference sets, the product
difference set in group G is described by the formula

∆ := (∆1 × ∆2) ∪ (∆1 × ∆2), (2)

where ∆i = Gi \ ∆i , i = 1, 2.
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Product construction of (144,66,30) difference sets

Our considered (144, 66, 30) HDSs with u = 6 can obviously be obtained
by the product method from (36, 15, 6) HDSs and a trivial HDS in
group of order 4, consisting of a single point.

There exist exactly 9 nonisomorphic (35 inequivalent) (36, 15, 6) HDSs
and two trivial (4, 1, 0) HDSs.

(144, 66, 30) HDSs obtained as their product serve as the initial set of DSs
needed to launch our new construction method.
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Our construction method

Our construction method is applicable to transitive incidence structures.
A transitive incidence structure we denote by

I (Ω,G ,B), (3)

where Ω is the point set, G is an automorphism group acting transitively
on Ω and B = {Bg | g ∈ G}, B ⊆ Ω, the block set.

Regular symmetric designs (block designs) corresponding to our aimed
DSs will be obtained as transitive substructures of the overstructures that
we develop in the construction procedure.
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Our construction method: basic theorem

From the following well-known theorem by Cameron and Praeger1

Theorem (1)

If I (Ω,H,B) is a t − (v , k,λ) design and H ≤ G ≤ Sym (Ω) holds, then
I (Ω,G ,B) is a t − (v , k,λ∗) design with λ∗ ≥ λ.

we conclude that block design as a transitive substructure can appear only
in transitive overstructure which is block design itself.

1P.J. Cameron and C.E. Praeger, Block-transitive t-designs I: point-imprimitive
designs, Discrete Mathematics 118 (1993), 33-43.
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Our construction method in two steps

In that sense, starting from a known difference set, say ∆, we accomplish
the construction of new DSs with the same parameters by proceeding in
the following two steps:

developing a transitive overstructure (of the regular symmetric design
corresponding to ∆) which is block design,
exploring the developed block design for desirable regular subdesigns.
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Construction method - step one: developing an
overstructure

Let ∆ be a difference set in group H and let G be its overgroup,
H ≤ G ≤ Sym (Ω).

For any point ω ∈ Ω let B = {ωg | g ∈ ∆}.
Then, I (Ω,G ,B) is a block design (Theorem (1)), an overstructure to be
explored for regular subdesigns.

This investigation we perform with the help of software MAGMA. If G is
of appropriate size, then a simple command in MAGMA returns all regular
subgroups R ≤ G up to conjugation.
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Construction method - step two: obtaining transitive
substructures

First, let’s consider obtaining substructures of a given transitive design
D = I (Ω,G ,B) related to a subgroup H ≤ G transitive on Ω.

Let B1, . . . ,Bl be representatives of all H-orbits on B.
Then

{I (Ω,H,Bi ) , i = 1, .., l} (4)

is the set of all transitive incidence substructures of D with an
automorphism group H.

Obviously, there exist gi ∈ G , i = 1, .., l so that Bi = Bgi . Accordingly, (4)
becomes

{I (Ω,H,Bgi ) , i = 1, .., l} . (5)

Tanja Vučičíc (University of Split, Croatia) ALCOMA15,Kloster Banz,March 15-20,2015 March 17, 2015 13 / 31



Construction method - step two: obtaining transitive
substructures

Applying the following simple fact about transitive incidence structures:

Lemma

Incidence structures I (Ω,G ,Bπ) and I (Ω,Gπ−1 ,B) are isomorphic for
every π ∈ Sym (Ω) .

gives that the set (5), up to isomorphism, is

{I
(

Ω,Hg
−1
i ,B

)
, i = 1, .., l}, (6)

which is technically convenient for a software search.
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Construction method - step two: filtering

Consequently, exploring incidence structures

I (Ω,Hg ,B) , with g from the (right) transversal of H in G , (7)

suffi ce to obtain all transitive substructures of the starting structure
D related to the subgroup H ≤ G .

We choose H to be regular subgroup.
What we do is check,
for each regular subgroup R ≤ G
and for every R̃ from the conjugacy class of R in G ,
which among the structures I

(
Ω, R̃,B

)
(if any) are block designs.

Thus obtained designs I
(

Ω, R̃,B
)
are symmetric. The corresponding

difference sets in underlying groups R̃ are easily read off.
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Look back on an overgroup choice

The chosen overgroup G in step one should not be too large so as to
insure that its regular subgroups stay within the reach of MAGMA.

It is also desirable that overgroup G contains a considerable number of
regular subgroups.

It turned out that holomorph of H, denoted by Hol(H), was an
appropriate choice for G .
Hol(H) is a semidirect product of H by Aut(H), where the action of
Aut(H) is natural.
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Outcome of the construction procedure

Without having exhausted all construction possibilities, we stopped the
procedure at the stage when the number of constructed inequivalent
(144, 66, 30) difference sets rose to 5765 and the absence of new groups
appearing in the process was indicative. Thereby the problem of existence
is solved for 131 groups [144, id ], ’id’belonging to the list:
[52,53,54,55,58,59,60,61,62,63,64,65,66,67,69,70,71,73,74,75,76,77,
78,79,81,82,83,84,85,86,87,89,90,91,92,93,94,95,97,98,99,100,101,
102,103,104,105,107,108,115,116,118,119,120,121,122,123,124,125,
126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,
142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,
158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,
174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,
190,191,192,193,194,195,196,197]
Group index is written in red if DS in that group cannot be obtained by
any product construction.
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Constructed difference sets are distributed in these 131 groups as show the
exponents of the group id-numbers in the following list:

[5215,535,542,555,587,599,607,617,6213,6386,64195,65101,66163,6799,70,
718, 738,745,754,7682,77148,7891,79198,818,8210,8314,84112,855,864,
874,894,904,91,9236,9363,9439,9565,974,982,996,10041,10111,10229,
10325,1045,105,1074,1084,115209,11698,1186,1192,12023,1213,1226,
12313,1243,1253,1263,1279,1289,1296,1307,131,13265,13361, 1345,
135,13661,13767,13852,13949,14064,14150,14258,143145,14481,14589,
146116,147119,14855,149111,15074,151142,15252,153174,154173,15516,
15619,15719,15846,159108,16075,16150,16280,16360,16427,16520,16657,
167152,16842,16975,17028,17151,17249,17350,17444,17522,17629,17757,
17827,17932,18020,18127,182,1838,1844,1855,186154,18712,18813,
1893,1906,19168,192108,19310,1943,19527,19616,1975]
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Symmetric designs

The developments of the constructed difference sets split into 1364
isomorphism classes of symmetric designs.
The next table contains the orders of the full automorphism groups and
the number of nonisomorphic designs having the full automorphism group
of the given order.
As expected, designs with small automorphism groups are numerous, while
few of them have large automorphism groups.
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Symmetric designs

|AutD | No. of nonisom. designs
144 397
288 382
432 5
576 383
864 19
1152 118
1296 15
1440 1
1728 16

|AutD | No. of nonisom. designs
2592 8
3456 1
5184 8
7776 2
10368 4
15552 2
46656 12

93312 13

190080 14

2Design obtainable by the product method
3Design obtainable by the product method
4AutD is a primitive group containing M12. Corr. DS is in [144,182].
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Regular partial difference sets with parameters
(144,66,30,30) and (144,65,28,30)

The notion of a difference set is generalized by that of a partial difference
set (PDS).
Four parameters determine a PDS.

A (v , k,λ, µ) partial difference set S in a group G of order v is a subset
S ⊆ G of size k such that every nonidentity element g ∈ S has exactly λ
representations as a quotient g = xy−1 using distinct elements x , y of S ,
and every nonidentity element g ∈ G \ S has exactly µ such
representations.

Any (v , k,λ) difference set is a (v , k,λ,λ) partial difference set.

Partial differential sets S1 and S2 in groups G1 and G2, respectively, we
will call equivalent if there exists a group isomorphism ϕ : G1 → G2 which
maps S1 onto S2.
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Regular partial difference sets with parameters
(144,66,30,30) and (144,65,28,30)

Our further interest sticks only to regular PDSs.

A partial difference set S is called reversible if
S = S (−1) = {s−1 | s ∈ S}.

A reversible partial difference set S is called regular if e /∈ S .
A simple and effi cient procedure for the search of regular partial difference
sets, starting from a known difference set ∆ ⊆ G , consists of the following
steps:

construction of all shifts ∆x of ∆, x ∈ G ,
selection of those shifts which are reversible sets in G ,
each shift which does not contain e is a regular (v , k,λ,λ) PDS,
each shift which contains e yields a regular (v , k − 1,λ− 2,λ) PDS
∆x \ {e}.
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Regular partial difference sets with parameters
(144,66,30,30) and (144,65,28,30)

Our further interest sticks only to regular PDSs.

A partial difference set S is called reversible if
S = S (−1) = {s−1 | s ∈ S}.

A reversible partial difference set S is called regular if e /∈ S .
A simple and effi cient procedure for the search of regular partial difference
sets, starting from a known difference set ∆ ⊆ G , consists of the following
steps:

construction of all shifts ∆x of ∆, x ∈ G ,
selection of those shifts which are reversible sets in G ,
each shift which does not contain e is a regular (v , k,λ,λ) PDS,
each shift which contains e yields a regular (v , k − 1,λ− 2,λ) PDS
∆x \ {e}.
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Regular partial difference sets with parameters
(144,66,30,30) and (144,65,28,30)

To this procedure of "surveyed shifting" we have submitted the
constructed difference sets. After MAGMA-testing on group
automorphisms, the final result is

2334 inequivalent regular PDSs in 53 groups:


1125  (144,66,30,30)

+
1209  (144,65,28,30)
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[144, id ]
↓

rPDS
↓

[144, id ]
↓

rPDS
↓

[144, id ]
↓

rPDS
↓

[144, id ]
↓

rPDS
↓

63 6+4 132 16+24 160 6+7 186 124+165
64 15+15 133 14+18 162 26+34 188 5+2
65 33+27 136 24+32 166 8+6 189 7+3
66 8+6 143 20+24 167 59+54 190 3+1
67 6+4 144 32+40 169 16+12 191 30+36
76 6+4 145 20+24 170 18+14 192 44+71
77 8+6 146 6+7 172 59+47 193 4+3
78 6+4 149 16+12 176 4+3 194 0+1
79 15+15 150 6+7 177 36+28 195 7+10
84 33+27 151 59+54 178 4+3 196 40+48
115 60+80 153 58+74 179 18+14 197 5+5
116 16+20 154 97+96 182 1+1
123 3+3 155 1+1 183 9+3
129 2+2 159 6+7 184 0+1
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Strongly regular graphs with parameters (144,66,30,30)
and (144,65,28,30)

For a group G and a set S ⊂ G with the property that e /∈ S and
S = S (−1), the Cayley graph Γ = Cay(G ,S) over G with connection set S
is the graph with vertex set G so that the vertices x and y are adjacent if
and only if x−1y ∈ S . Then Γ is undirected graph without loops.
The following assertion5 about Cayley graphs holds.

A Cayley graph Cay(G , S) is a (v , k,λ, µ) strongly regular graph
if and only if

S is a (v , k,λ, µ) regular partial difference set in G .

5S.L. Ma, Partial Difference Sets, Discrete Mathematics, 52 (1984), 75-89.
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Strongly regular graphs with parameters (144,66,30,30)
and (144,65,28,30)

For two inequivalent partial difference sets S1 and S2 in a group G ,
the graphs Cay(G , S1) and Cay(G ,S2) can be isomorphic.

Similarly, for two inequivalent partial difference sets S1 and S2 in
groups G1 and G2, |G1| = |G2| , the graphs Cay(G1,S1) and
Cay(G2, S2) can be isomorphic.

The examples of both such cases appeared in our analysis.
Regarding (graph) isomorphism of the corresponding strongly regular
Cayley graphs, our regular PDSs split into 121 nonisomorphic
SRG-classes.

43 graphs are with parameters (144,66,30,30) and 78 with parameters
(144,65,28,30).
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Parameters (144,66,30,30) i.e. VALENCY 66

|AutΓ| ↓ . . .[144,id ]→ · · · 154 182 · · · No. of nonisom.

144 2
288 1 2
576 15 26
1152 4 4
1728 1 2
3456 2 2
5184 2 2
10368 2 2
190080 1 1

· · · 27 1 · · · Total: 43
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Parameters (144,65,28,30) i.e. VALENCY 65

|AutΓ| ↓ . . .[144,id ]→ · · · 154 182 · · · No. of nonisom.

144 7
288 8 29
576 15 26
864 1 3
1152 5 5
1440 1 1
1728 2 3
3456 1 1
10368 1 1
15552 1 1
31104 1 1

· · · 35 1 · · · Total: 78
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For instance, even 62=27+35 nonisomorphic graphs of valencies 66 and
65 can be represented as regular PDSs in the group [144,154].

The MAGMA-files containing records of the constructed nonisomorphic
SDs and SRGs are available at the site

http://www.pmfst.hr/~vucicic/MAGMA_REC144/
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Thank you!
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