On extremal type III codes

Darwin Villar

RWTH-Aachen

ALCOMA 15

(日) (部) (注) (注) (注) (の)()

Introduction

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

D. Villar

Introduction

New extremal type III codes Definitions The [60,30,18]₃ code The [52,26,15]₃ code

Conclusions

Let C be a self-dual [n, k, d]- code over \mathbb{F}_q .

Type I	C is 2-divisible or even and $q = 2$
Type II	C is 4-divisible or doubly even and $q = 2$
Type III	C is 3-divisible and $q = 3$
Type IV	C is 2-divisible and $q = 4$

In 1973 C.L. Mallows and N.J.A. Sloane proved that the minimum distance d of a self-dual [n, k, d]-code satisfies

Type I	$d \leq 2$	$\left\lfloor \frac{n}{8} \right\rfloor + 2$		
Type II	$d \leq 4$	$\left\lfloor \frac{n}{24} \right\rfloor + 4$		
Type III	$d \leq 3$	$\left\lfloor \frac{n}{12} \right\rfloor + 3$		
Type IV	$d \leq 2$	$\left\lfloor \frac{n}{6} \right\rfloor + 2$		

Codes reaching the bound are called Extremal.

Introduction

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

D. Villar

Introduction

New extremal type III codes Definitions The [60,30,18]₃ code The [52,26,15]₃ code Example:

The extended ternary Golay code is a [12, 6, 6]₃.

/	0	1	1	1	1	1
	1	0	1	2	2	1
,	1	1	0	1	2	2
16	1	2	1	0	1	2
	1	2	2	1	0	1
	1	1	2	2	1	0/

Introduction

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

Introduction

New extremal type III codes Definitions The [60,30,18]₃ code The [52,26,15]₃ code

Conclusions

In 1969 Vera Pless discovered a family of self-dual ternary codes $\mathcal{P}(p)$ of length 2(p + 1) for odd primes p with

 $p \equiv -1 \pmod{6}$.

Also the extended quadratic residue codes XQR(p) of length p + 1, whenever p prime

 $p \equiv \pm 1 \pmod{12}$,

define a series of self-dual ternary codes of high minimum distance.

In fact for small values of *p* both families define extremal codes.

The known extremal ternary codes of length 12n.

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

D. Villar

Introduction

New extrema type III codes Definitions The [60,30,18]3 or The [52,26,15] or

Conclusions

Length n	$\mathcal{P}(\frac{n}{2}-1)$	XOP(n = 1)	Extremal	Partial
		$\lambda Q \Lambda (n-1)$	distance	Classification*
12		6	6	\checkmark
24	9	9	9	\checkmark
36	12	-	12	$o(\sigma) \ge 5$
48	15	15	15	$o(\sigma) \ge 5$
60	18	18	18	$o(\sigma) \ge 11$
72	-	18	21	No extremal
84	21	21	24	Unknown

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

* $\sigma \in Aut(C)$ of prime order.

Definitions

ALgebraic COMbinatorics and Applications -ALCOMA 2015-D Villar

Introduction

New extremal type III codes Definitions The [60,30,18]3 cod The [52,26,15]3 cod

Conclusions

Given *C* a [n, k]-code over \mathbb{F}_q and $\sigma \in \operatorname{Aut}(C)$ of order *p* a prime number, then we say that $\sigma \in \operatorname{Sym}(n)$ has the **type** p - (t, f) if σ has t p cycles and f fixed points.

By the Maschke's Theorem any code C with an automorphism σ of prime order not dividing q is decomposable as

$$C = F_{\sigma}(C) \oplus E_{\sigma}(C),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where $F_{\sigma}(C)$ denotes the **Fixed code** or submodule of words fixed by σ and $E_{\sigma}(C)$ its σ -invariant complement.

Definitions

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

Introduction

New extremal type III codes Definitions The [60,30,18]₃ cod The [52,26,15]₃ cod

Conclusions

Let K be a field, $n \in \mathbb{N}$. Then the **monomial group**

$$\operatorname{Mon}_n(K^*) \cong (K^*)^n : S_n \leq \operatorname{GL}_n(K),$$

the group of monomial $n \times n$ -matrices over K, is the semidirect product of the subgroup $(K^*)^n$ of diagonal matrices in $GL_n(K)$ with the group of permutation matrices.

The monomial automorphism group of a code $C \leq K^n$ is

$$\operatorname{Aut}(C) := \{g \in \operatorname{Mon}_n(K^*) \mid Cg = C\}.$$

The idea to construct good self-dual codes is to investigate codes that are invariant under a given subgroup G of $Mon_n(K^*)$. A very fruitful source are monomial representations, for some prime p, of $G = SL_2(p)$.

Characterization of types

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

D. Villar

Introduction

New extremal type III codes Definitions The [60,30,18]₃ co

The [52,26,15]3 code

Conclusions

Let $C = C^{\perp} \leq \mathbb{F}_{q}^{n}$, $p \nmid q(q-1)$ and $\sigma \in \operatorname{Aut}(C)$ of type p - (t, f)with $\sigma = \Omega_{1} \cdot \ldots \cdot \Omega_{t} \cdot \Omega_{t+1} \cdot \ldots \cdot \Omega_{t+f}$, where wlog we take $\Omega_{i} := \begin{cases} (p(i-1)+1, \cdots, ip) &, i \in \{1, \cdots, t\}\\ (p(i-f)+f) &, i \in \{t+1, \ldots, t+f\} \end{cases}$.

Then

Theorem

$$F_{\sigma}(C) := \{ c \in C \mid \sigma(c) = c \Leftrightarrow c_1 = \cdots = c_p, \cdots, c_{p(t-1)+1} = \cdots = c_{tp} \},$$

the Fixed Code has dimension $\frac{f+t}{2}$ and $E_{\sigma}(C) := \left\{ c \in C \mid \sum_{i \in \Omega_1} c_i = \dots = \sum_{i \in \Omega_t} c_i = c_{tp+1} = \dots = c_{tp+f} = 0 \right\},$

the σ – invariant complement of $F_{\sigma}(C)$ in C has dimension $\frac{t(p-1)}{2}$.

Characterization of types

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

D. Villar

Introduction

New extremal type III codes Definitions The [60,30,18]3 coo

-Conclucione

Remark.

If f < d(C), then $t \ge f$.

There is a bound that is well known in coding theory, and it is the bound found by J. H. Griesmer in 1960. This bound states that: $n \ge \sum_{i=1}^{k-1} \left[\frac{d}{q^{i}}\right].$

Using this bound we get a new inequality for the case in jump dimension where $q \mid n$. So we get this lemma.

Lemma.

Let C be $a [n, \frac{n}{2}, d]_q$ -code. If C is a type III code then $d \le \frac{2}{3} \frac{n}{\left[1 - 3^{\frac{2-n}{2}}\right]}$

Case [60,30,18]

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

D. Villar

Introduction

New extremal type III codes Definitions The [60,30,18]3 code The [52,26,15]3 code

Conclusions

Theorem

Let C be an extremal type III code of length 60 with an automorphism σ of order 29, then σ must be of type 29 – (2, 2). Hence

$$\dim(F_{\sigma}(C)) = 2 \text{ and } \dim(E_{\sigma}(C)) = 28.$$

In this scenario

$$\overline{F}_{\sigma}(C) \cong \begin{pmatrix} 1^{29} & 0^{29} & 1 & 0 \\ 0^{29} & 1^{29} & 0 & 1 \end{pmatrix}$$

And

$$\mathsf{E}_{\sigma}(C) = \mathsf{E}_{\sigma}(C)^{\perp} \leq (\mathbb{F}_{3^{28}})^2.$$

Case [60,30,18]

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

D. Villar

Introduction

New extremal type III codes Definitions The [60,30,18]3 code The [52,26,15]3 code

Conclusions

Theorem (Nebe, Villar)

Let $C = C^{\perp} \leq \mathbb{F}_3^{60}$, $\sigma \in Aut(C)$ of order 29. Then

$$C \cong \mathcal{P}(29), C \cong XQR(59) \text{ or } C \cong \mathcal{V}(29),$$

where

Aut(
$$\mathcal{V}(29)$$
) |= $2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 29$

and contains $SL_2(29)$.

The later even lead us in 2013 to a generalization of the Pless symmetry code over \mathbb{F}_q and to find a new family of codes invariant under a monomial representation of $SL_2(p)$ of degree 2(p + 1), p a prime so that

$$p \equiv 5 mod 8$$
.

The new series of Codes

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

D. Villar

Introduction

New extremal type III codes Definitions The [60,30,18]3 cod The [52,26,15]3 cod

Conclusions

Minimum distance of ternary $\mathcal{V}(p)$ computed with MAGMA:

р	5	13	29	37	53
2(p+1)	12	28	60	76	108
$d(\mathcal{V}(p))$	6	9	18	18	24
$\operatorname{Aut}(\mathcal{V}(p))$	2. <i>M</i> ₁₂	SL ₂ (13)	SL ₂ (29)	\geq SL ₂ (37)	\geq SL ₂ (53)

For q = 5, 7, and 11 and small lengths we computed $d(\mathcal{V}_q(p))$ with MAGMA:

(p,q)	(13, 5)	(29,5)	(5,7)	(13, 7)	(5,11)	(13, 11)
2(p + 1)	28	60	12	28	12	28
$d(\mathcal{V}(p))$	10	16	6	9	7	11

Case [52, 26, 15]

Theorem

COMbinatorics and Applications -ALCOMA 2015-

ALgebraic

D. Villar

Introduction

New extremal type III codes Definitions The [60,30,18]3 code The [52,26,15]3 code

Conclusions

Let $C \leq \mathbb{F}_3^{52}$ be an extremal type III code and p a prime such that p divides the order of Aut(C). Then $p \leq 13$. Moreover if $\sigma \in Aut(C)$ is of order 13, then it is of type 13-(4,0). Therefore

 $\dim(F_{\sigma}(C)) = 2$ and $\dim(E_{\sigma}(C)) = 24$.

We know that *C* is a 3-divisible code, then we may assume, up to equivalence, that $F_{\sigma}(C)$ is generated by

$$G_0:=egin{pmatrix} 1^{13} & 0^{13} & -1^{13} & 1^{13} \ 0^{13} & 1^{13} & 1^{13} & 1^{13} \end{pmatrix}$$
 ,

as

 $F_{\sigma}(C) \cong \overleftarrow{\langle (1,0,-1,1), (0,1,1,1) \rangle} \otimes \langle (1,1,1,1,1,1,1,1,1,1,1,1) \rangle,$

and there is a unique $(4, 2, 3)_3$ -code C', up to equivalence.

Case [52, 26, 15]

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

New extremal type III codes Definitions The [60,30,18]₃ code The [52,26,15]₃ code In $\mathbb{F}_3[x]$ we have that

$$(x^{13} - 1) = (x - 1)(x^3 - x - 1)(x^3 + x^2 - 1)(x^3 + x^2 + x - 1)(x^3 - x^2 - x - 1)$$

= $(x - 1) \cdot p_1 \cdot p_2 \cdot p_3 \cdot p_4.$

Then,

 $\mathbb{F}_{3}\langle \sigma \rangle \cong \mathbb{F}_{3} \oplus \mathbb{F}_{3^{3}} \oplus \mathbb{F}_{3^{3}} \oplus \mathbb{F}_{3^{3}} \oplus \mathbb{F}_{3^{3}}.$

Let e_0 , e_1 , e_2 , e_3 , $e_4 \in \mathbb{F}_3\langle \sigma \rangle$ denote the primitive idempotent elements, thus we get

 $C = Ce_0 \oplus Ce_1 \oplus Ce_2 \oplus Ce_3 \oplus Ce_4.$

Here $F_{\sigma}(C) = Ce_0 = Ce_0^{\perp}$ of dimension 2 over \mathbb{F}_3 ,

$$Ce_1 = Ce_2^{\perp} \leq (\mathbb{F}_{3^3} \oplus \mathbb{F}_{3^3} \oplus \mathbb{F}_{3^3} \oplus \mathbb{F}_{3^3})^4$$

and

 $Ce_3 = Ce_4^{\perp} \leq (\mathbb{F}_{3^3} \oplus \mathbb{F}_{3^3} \oplus \mathbb{F}_{3^3} \oplus \mathbb{F}_{3^3})^4.$

ALgebraic COMbinatorics and Applications -ALCOMA 2015-D. Villar

Introduction

New extremal type III codes Definitions The [60,30,18]₃ code The [52,26,15]3 code

Conclusions

One gets that C_{e_i} , i = 1, 2, 3, 4, are 2 dimensional codes over \mathbb{F}_{3^3} . Thus we choose generator matrices

$$G_{1} = \begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{pmatrix}, G_{2} = \begin{pmatrix} -a & -c & 1 & 0 \\ -b & -d & 0 & 1 \end{pmatrix},$$
$$G_{3} = \begin{pmatrix} 1 & 0 & e & f \\ 0 & 1 & g & h \end{pmatrix}, G_{4} = \begin{pmatrix} -e & -g & 1 & 0 \\ -f & -h & 0 & 1 \end{pmatrix},$$

Put then

 $s_i := (x^{13} - 1)/p_i, i = 1, 2, 3, 4$

and let C_i be the ternary cyclic code generated by s_i . We compute the action of σ and represent this as a left multiplication with $z_{11} \in \mathbb{F}_3^{3 \times 3}$ on the basis of C_1 , C_3 respectively.

ALgebraic COMbinatorics and Applications -ALCOMA 2015-D. Villar

Introductior

New extremal type III codes Definitions The [60,30,18]₃ code The [52,26,15]3 code

Conclusions

By taking orbit representatives of the action of $\langle -z_{11} \rangle$ on $\mathbb{F}_{3^3}^*$ and considering at the same time the action of $Aut(F_{\sigma}(C))$ on $(\mathbb{F}_{3^3} \oplus \mathbb{F}_{3^3} \oplus \mathbb{F}_{3^3})^4$ we obtained two non-equivalent codes. One equivalent to the found by Gaborit in 2002 with $|Aut(C)| = 2^5 \cdot 13$ and a new one with $|Aut(C)| = 2^2 \cdot 3 \cdot 13$, both can be written as the product of cyclic groups.

Something interesting about this codes is that they are related to lattices of norm 5 also thanks to a work done by Gaborit.

Conclusions

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

D. Villar

Introduction

New extremal type III codes Definitions The [60,30,18]3 code The [52,26,15]3 code

Conclusions

- Extremal type III codes of length 60 with an automorphism of order 29: $\mathcal{P}(29)$, XQR(59) and $\mathcal{V}(29)$
 - Series $\mathcal{V}(p)$, $p \equiv 5 \mod 8$ of good type III codes.
- Two extremal type III codes of length 52 with an automorphism of order 13 and associated to a unimodular extremal lattice with norm 5 and dimension 52.

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

D. Villar

Introduction

New extremal type III codes Definitions The [60,30,18]₃ code The [52,26,15]₃ code

Conclusions

Some related research topics are:

- Properties of the weight distribution of codes invariant under a big automorphism group.
- Is the new [52,26,15] extremal type III code part of an infinite series of good codes?

ALgebraic COMbinatorics and Applications -ALCOMA 2015-

D. Villar

Introduction

New extremal type III codes Definitions The [60,30,18]₃ cod The [52,26,15]₃ cod

Conclusions

Thanks for your attention

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●