Distance regular colorings of Cayley graphs of \mathbb{Z}^n

Anastasia Vasil'eva

Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, RUSSIA

Anastasia Vasil'eva (Sobolev Institute of Distance regular colorings) of Cayley grap

()

Perfect colorings

Let G = (V(G), E(G)) be a graph. We denote the graph distance between $\alpha, \beta \in V(G)$ by $d(\alpha, \beta)$. Let $\overline{C} = (C_1, \ldots, C_r)$ be a partition (or a coloring) of V(G). We identify the partition $\overline{C} = (C_1, \ldots, C_r)$ with the function $\varphi : V(G) \rightarrow \{1, \ldots, r\}$.

Perfect colorings

Let G = (V(G), E(G)) be a graph. We denote the graph distance between $\alpha, \beta \in V(G)$ by $d(\alpha, \beta)$. Let $\overline{C} = (C_1, \ldots, C_r)$ be a partition (or a coloring) of V(G). We identify the partition $\overline{C} = (C_1, \ldots, C_r)$ with the function $\varphi : V(G) \rightarrow \{1, \ldots, r\}$. Suppose that for any $i, j \in \{1, \ldots, r\}$ there exists the integer a_{ij} such that for any $\alpha \in C_i \quad |\{\beta \in C_j : d(\alpha, \beta) = 1\}| = a_{ij}$.

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & & \vdots \\ a_{r1} & \cdots & a_{rr} \end{bmatrix}$$

Then the coloring \overline{C} is called perfect (or the partition is called equitable) with the parameter matrix A.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Distance regular colorings

If the parameter matrix is three-diagonal then the coloring is called distance regular. In this case we denote

 $a_{ii} = k_i$ $a_{i,i-1} = l_i$ $a_{i,i+1} = u_i$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Distance regular colorings

If the parameter matrix is three-diagonal then the coloring is called distance regular. In this case we denote

In this case the code C_1 (and C_r) is called completely regular.

Cayley graphs

We consider the Cayley graph $Cay(\mathbb{Z}^n, m)$ of \mathbb{Z}^n with m generators $\{g_1, \ldots, g_m\} \in \mathbb{Z}^n$. Here $V(Cay(\mathbb{Z}^n, m)) = \mathbb{Z}^n$ and $(\alpha, \beta) \in E(Cay(\mathbb{Z}^n, m)) \iff \alpha - \beta = \pm g_i$ for some i. Usually perfect colorings (equitable partitions) and completely regular codes are considered in distance regular graphs i.e.; the graphs with the following property:

for any $\alpha \in V(G)$ the distance partition $(C_1 = \{\alpha\}, \ldots, C_r)$ is distance regular with the same parameters.

Usually perfect colorings (equitable partitions) and completely regular codes are considered in distance regular graphs i.e.; the graphs with the following property:

for any $\alpha \in V(G)$ the distance partition $(C_1 = \{\alpha\}, \ldots, C_r)$ is distance regular with the same parameters.

Cayley graph $Cay(\mathbb{Z}^n, m)$ of \mathbb{Z}^n with m generators are not distance regular for any $n \geq 2$.

Monotonicity

Let C be a completely regular code and $\overline{C} = (C_1 = C, \ldots, C_r)$ be a distance regular coloring. In general, even in an arbitrary distance regular graph the sequences (l_2, \ldots, l_r) and (u_1, \ldots, u_{r-1}) are not monotonic.

Theorem 1.

Let $\overline{C} = (C_1, \ldots, C_r)$ be a distance regular coloring of the Cayley graph $Cay(\mathbb{Z}^n, m)$ of \mathbb{Z}^n with m generators. Then

$$I_2 \leq \ldots \leq I_r$$

$$u_1 \geq \ldots \geq u_{r-1}.$$

Reducible colorings

We identify the partition $\overline{C} = (C_1, \ldots, C_r)$ with the function $\varphi: V(G) \to \{1, \ldots, r\}$. The coloring φ of the Cayley graph $Cay(\mathbb{Z}^n, m)$ of \mathbb{Z}^n with m generators $\{g_1, \ldots, g_m\}$ is called reducible if it can represented as follows:

there exists the distance regular coloring ψ of the Cayley graph of \mathbb{Z}^1 and the constants $c_1, \ldots, c_m \in \{-1, 0, 1\}$ such that for any $\alpha = z_1g_1 + \ldots + z_mg_m \in \mathbb{Z}^n$

 $\varphi(\alpha) = \psi(z_1c_1 + \ldots + z_mc_m)$

Theorem 2.

Let $\overline{C} = (C_1, \ldots, C_r)$ be an irreducible distance regular coloring of the Cayley graph $Cay(\mathbb{Z}^n, m)$ of \mathbb{Z}^n with m generators. Then $r \leq 2m + 1$.

Theorem 2.

Let $\overline{C} = (C_1, \ldots, C_r)$ be an irreducible distance regular coloring of the Cayley graph $Cay(\mathbb{Z}^n, m)$ of \mathbb{Z}^n with m generators. Then $r \leq 2m + 1$.

Or in terms of codes:

Theorem 2'.

Let C be a completely regular code in the Cayley graph $Cay(\mathbb{Z}^n, m)$ of \mathbb{Z}^n with m generators. Then the covering radius of C is at most 2m + 1.

There is the homomorphism h of the graph $C(\mathbb{Z}^m)$ of m-dimensional rectangular grid into the Cayley graph $Cay(\mathbb{Z}^n, m)$ of \mathbb{Z}^n with m generators $\{g_1, \ldots, g_m\}$: $h(\alpha_1, \ldots, \alpha_m) = \alpha_1 g_1 + \ldots + \alpha_m g_m$. So, any coloring of $Cay(\mathbb{Z}^n, m)$ produces the coloring of $C(\mathbb{Z}^m)$.

There is the homomorphism h of the graph $C(\mathbb{Z}^m)$ of m-dimensional rectangular grid into the Cayley graph $Cay(\mathbb{Z}^n, m)$ of \mathbb{Z}^n with m generators $\{g_1, \ldots, g_m\}$: $h(\alpha_1, \ldots, \alpha_m) = \alpha_1 g_1 + \ldots + \alpha_m g_m$. So, any coloring of $Cay(\mathbb{Z}^n, m)$ produces the coloring of $C(\mathbb{Z}^m)$. There exists the unique distance regular coloring of $C(\mathbb{Z}^m)$ with 2m + 1colors. This coloring is generated by the distance coloring of $\mathbb{Z}_2^{2m} = \mathbb{Z}_4^m$ with respect to one vertex. It can not generate the distance regular coloring with 2m + 1 colors in $Cay(\mathbb{Z}^n, m)$.

Theorem 3.

Let $\overline{C} = (C_1, \ldots, C_r)$ be an irreducible distance regular coloring of the Cayley graph $Cay(\mathbb{Z}^n, m)$ of \mathbb{Z}^n with m generators. Then $r \leq 2m$.

Theorem 3.

Let $\overline{C} = (C_1, \ldots, C_r)$ be an irreducible distance regular coloring of the Cayley graph $Cay(\mathbb{Z}^n, m)$ of \mathbb{Z}^n with m generators. Then $r \leq 2m$.

Or in terms of codes:

Theorem 3'.

Let C be a completely regular code in the Cayley graph $Cay(\mathbb{Z}^n, m)$ of \mathbb{Z}^n with m generators. Then the covering radius of C is at most 2m.

Thank you for your attention!

æ

イロト イポト イヨト イヨト