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GENERIC CONSTRUCTIONS

Definition

A t—(v,k,A)-design (X,B) is said to be (s, o)-resolvable if its
block set B can be partitioned into w classes m, .. ., mw Such
that (X, m;) isa s— (v,k,o) design foralli=1, ..., w, where

1 <s < t. Each m; is called a resolution class



GENERIC CONSTRUCTIONS

Definition

A t—(v,k,A)-design (X,B) is said to be (s, o)-resolvable if its
block set B can be partitioned into w classes m, .. ., mw Such
that (X, m;) isa s— (v,k,o) design foralli=1, ..., w, where

1 <s < t. Each m; is called a resolution class

Definition

Let D be a t— (v, k,\) design (D may have repeated blocks)
admitting a (s, o)-resolution with nq, ..., my as resolution
classes. Define a distance between any two classes m; and 7
by d(m;, 7j) = min{li — jl, w —|i — ji}.



GENERIC CONSTRUCTIONS

e n>1, integer.

o {kqi,..., kn,Kny1,---, k>,} and k, integers, such that
2<ky;<...<kp<k/2and k;j+k, j=kfori=1,...,
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e Assume there exist 2n 3-designs D; = (X, B;) with
parameters 3 — (v, k;, A)) having a (1, ¢/))-resolution
such thatw;=w,foralli=1,..., n, where w; is the
number of (1, cU))-resolution classes of D;.
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e Assume there exist 2n 3-designs D; = (X, B;) with
parameters 3 — (v, k;, A)) having a (1, ¢/))-resolution
such thatw;=w,foralli=1,..., n, where w; is the
number of (1, cU))-resolution classes of D;.

e Also assume that
@ For each pair (D;,D,;), 1 <i<n, either D; or D, has to
be simple.



GENERIC CONSTRUCTIONS

n > 1, integer.

{k1,....kn,kny1,...,k2n} @and k, integers, such that
2<ky<...<kp<k/2and k;j+k, j=kfori=1,...,n.

e Assume there exist 2n 3-designs D; = (X, B;) with
parameters 3 — (v, k;, A)) having a (1, ¢/))-resolution
such that w; =w,,; foralli=1,...,n, where w; is the
number of (1, cU))-resolution classes of D;.

e Also assume that
@ For each pair (D;,D,;), 1 <i<n, either D; or D, has to
be simple.
®Ifa Dj, j € {i,n+1}, is not simple, then D; is a union of a;
copies of a simple 3 — (v, k;, «)) design C;, wherein C;
admits a (1, oU))-resolution. Thus, AV) = a;al).



GENERIC CONSTRUCTIONS

e If D; is not simple, (i.e. D; is a union of a; copies of a
simple 3 — (v, k;, «)) design C;, where PU) = {n(lf) ..... nﬁ”}
is a (1, o))-resolution of C;), then the corresponding

(1, oV))-resolution of D; is the concatenation of a; sets PU).
So, the w; = ajt; resolution classes of D; are of the form
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e If k; =2, then D7 is a union of a; copies of the trivial
2—(v,2,1) designi.e. D; is considered as a 3-design with
AL =o.



GENERIC CONSTRUCTIONS

e If D; is not simple, (i.e. D; is a union of a; copies of a
simple 3 — (v, k;, «)) design C;, where PU) = {n(l” ..... my
is a (1, o))-resolution of C;), then the corresponding

(1, oV))-resolution of D; is the concatenation of a; sets PU).
So, the w; = ajt; resolution classes of D; are of the form

e If k; =2, then D7 is a union of a; copies of the trivial
2—(v,2,1) designi.e. D; is considered as a 3-design with
AL =o.

e If necessary, also assume that there exists a 3 — (v, k, A)
design D = (X, B).



GENERIC CONSTRUCTIONS

Notation:
. 71(1“ ..... 71.(,5@) : the wy classes in a (1, o(9))-resolution of Dy,
t=1,..., 2n. Recall that w,, , = wy,.

e The distance defined on the classes of D, is then
d® ("), 7)) = min(li —jl, we —1i —ji

e b) =clv/k : the number of blocks in each resolution
class of of D;.

U= oU) : the number of blocks containing a point in
each resolution class of of D;.

. )\g) =AU(v—2)/(k;—2) : the number of blocks of D;
containing two points.



GENERIC CONSTRUCTIONS

Construction |

Let D; = (X, B;) be a copy of D; defined on X such that
XNX=@. Also let D = (X, B) be a copy of D.

Define blocks on the point set X U X as follows:
I. blocks of D and blocks of D;

Il. blocks of the form A U B for any pair A € nl.(h) and
Be frj(n+h) with ¢, < d(h)(n’.(h],nj(h]) <Sp, ¢4 =0,1, for
h=1,..., n;

lIl. blocks of the form A U B for any pair A € fr,.(h) and
Be ﬂj(””” with ¢p, < d(m(n}’”,nj@’”) < sp ep = 0,1, for
h=1,..., n



GENERIC CONSTRUCTIONS

Verification: CASEk; >3

e The blocks containing points a, b, c € X (resp. &,b, ¢ € X):

n
A+ Y zpAMph) oz, (M p(h)
h=1

° Thg blocks containing points a, b, ¢ witha, b€ X and ¢, ¢ X (resp.
a.b,c):
n
Zzhxémun”, +zZp Ay
h=1
e The defined blocks will form a 3-design if

/\+Zz)\ b(n+h) 1z A(n+Mp Zzh7‘2 pin +2zn A8 Muy,
h=1

equivalently

n
h h
A=Y (A Upin + AT up) — ABpHR) Nt p(h) )z,
h=1



GENERIC CONSTRUCTIONS

Verification: CASEK; =2

The condition for which the defined blocks form a 3-designs
becomes

A = {alun+1+)\(n+l)u1f)\(’”l]bm}zl

h
+Z{)\2 Wpn + A M) — M pnth) L\ pthyz,



GENERIC CONSTRUCTIONS

Summary of Construction |

(i) If k; =2 and

0 = {arpi1+AY Huy —Antphz

n
+ 3 A Uy AT U — (AP X+ pi Yz, (1)
h=2

with 1 < z,, < wy, if both Dy and D, are simple and 1 < z,, < t}, if Dy, or
D, p is non-simple, then there exists a 3 — (2v, k, ©) de5|gn with

={a1Upy1 + 7\2 U1}21 + Z{ 2 Un+h + 7‘(2n+h) Up)}zZp.
h=2
(ii) If k; > 3 and
0 = i (A Uy + ATy — ADp+h) L x(0th )17, - (2)
h=1
with 1 < z,, < wy, if both Dy and D, are simple and 1 < z,, < ty, if Dy, or

Dpipis non 5|mple then there exists a 3 — (2v, k, ©) de5|gn with

n
h h
=Y (A upip + ATy )z,
h—1



GENERIC CONSTRUCTIONS

Summary of Construction | (Cont.)

(iii) If ky =2 and

(n+1) up — A(M+1) p(1)

0 < {alunﬂ + )\ 1z1

(n+h)

+ Z{ A U+ ATy — (AP0 L\ ph) )7, (3)

with 1 < z,, < wy, if both Dy, and D,Hh are simpleand 1 < z, <t if D, or
Dpp is non-simple, further if thereisa 3 — (v, k, A) de5|gn having

A = {arni1+AY Py Atz

n
+ 3 L Up o+ AT up) — A A (M () )37, (4)
h=2

then there exists a 3 — (2v, k, ®) design with

(n+h)

1)
= {a1Ups1 + AT urlz + Z{ U+ Ay Mup) iz,

h=2



GENERIC CONSTRUCTIONS

Summary of Construction | (Cont.)

(iv) Ifk; >3 and

n
0 < S A Upip + AT M up) — A A(EM ) )37, - (5)
h=1

with 1 < z,, < wy, if both Dy, and D,Hh are simpleand 1 < z, <t if D, or
Dp,p is non-simple, further if thereisa 3 — (v, k, A) de5|gn having

n
A= Y 1A Uy + AT up) — AR Xtz (6)

then there exists a 3 — (2v, k, ®) design with

n

h)
e=> {()\2 Wnin + A up))z,.
h=1



GENERIC CONSTRUCTIONS

Construction Il
Construction Il deals with the case k, = k/2.
Take D = D3y.

Blocks of types |, Il, and Ill are as in Construction | for
h=1,..., n — 1. Define a further type of blocks.

IV. blocks of the form A U B for any pair A e 7r,.(”) and B € #*"

J
with ey < dM (m", 7") < sp, en =0, 1.



GENERIC CONSTRUCTIONS

Summary of Construction Il

(i) Ifk; =2 and
0 = (arpiy + A Huy =AMz 4 APy, —AMpM)z,

n—1
+ 3 LA Ui+ AT Mup) — (AR At bRy 37, (7)
h=2
with 1 < z,, < wy, if both Dy, and D, ,, are simple and 1 < z, < t}, if Dy or
Dpp is non-simple, then there exists a 3 — (2v k,©) de5|gn with

h
© = (a1Un1 + A un)zr + (A up)zn + Z{ 7\2 Wpin + A )z,
h=2
(i) If ky > 3 and
0 = (A up—AMbM)z,
n—1
+ Y LAY Up AT Uy — AN A B )1z, (8)
h=1

with 1 < z,, < wy, if both Dy and D, are simple and 1 < z,, < t, if Dy, or
Dpp is non-simple, then there exists a 3 — (2v,k, ©) de5|gn with
n—1
h h
o= (A(zn)un)zn + Z{(Aé Wpon + Aé"* up)izp.
h=1



GENERIC CONSTRUCTIONS

Summary of Construction Il (Cont.)

(iii) If ky =2 and
0 < (alun+1 F ANy A pA) )z 1 APy, — APz,
+ Z{ AP Uy + ATy — (At A (e p() )37, (9)
with 1 < z, < wy, if both Dy, and D,,H, are simpleand 1 < z, < t, if D, or
D, p is non-simple, further if thereisa 3 — (v, k, A) de5|gn having

A = (ailpi1 +)\§"+1)u1 77\(n+1)b[1))21 + (Aé")unf)\(”)b(”))zn

n—1
+ Y AL Uny + AT up) — AR A+ 17010)
h=2

then there exists a 3 — (2v, k, ®) design with

1 h)
© = (a1tn1 + A" Vur)zy + A un)z + Z{ MUnn + A (n+

h=2

up)izp.



GENERIC CONSTRUCTIONS

Summary of Construction Il (Cont.)

(iv) If kg > 3 and
0 < (Aé")un—x(”’b(”))zn
+ Z{ A Un i+ NS up) — (AWM X+ g1 747 7)
with 1 < z, < wy, if both Dy, and D,,H, are simpleand 1 < z, < t, if D, or
D, p is non-simple, further if thereisa 3 — (v, k, A) de5|gn having

A= AMup—AMp)z,

n—1
+ Y A Upy + AT up) — AR A+ ) )7012)
h=1

then there exists a 3 — (2v, k, ®) design with

©="un zn+Z{ Ppen + A up) )z,



APPLICATIONS

For applications of Constructions | and Il we implicitly use the following
result and observation.

B Baranyai-Theorem The trivial kK — (v, k, 1) design is (1,1)-resolvable
(i.e. having a parallelism) if and only if k|v.

m Block orbits If gcd(v, k) =1, then the kK — (v, k, 1) design is
(1, v)-resolvable. (The resolvable classes are the block orbits of a fixed
point free automorphism of order v.)



APPLICATIONS

F1 Construction Il with n = 1.

v,k : integers with v > k > 3 and gcd( v,k)=1.Dy: the complete design

3—(v,k ({73). Then A = (13), ALY = (13),u (1) = v, and

w1 = ({1)/k.

D: 3 — (v,2k, A\).

Construction Il yields a simple 3-design 3 — (2v, 2k, ®) when it holds
AUy —A®pDyz; — A,

or

3\ . .
=A/2 (k 2) is an integer,
with z; < (Zj)/k. Then

k(v—2)A

— @0 —
@—7\2 uizy = 2(V—k) .



APPLICATIONS

F1 (Cont.)
Take the complete design D: 3 — (v, 2k, A) :==3 — (v, 2k, (5, 3))-

o |f 3
z, = <2k 3>/2<k 2) is an integer,

with z; < (,‘gj)/k. Then there is a simple 3 — (2v, 2k, ©) design with

_k(v—=2)(v-3
®=3v=x (2k—3)'



APPLICATIONS

F1 Some special cases: k = 3,4,5.

@ There exists a simple 3 — (2v, 6, ©) design with

_3(v—-2)(v-3
672(v—3)( 3 )

forv=1,4,58 mod12.
® There exists a simple 3 — (2v, 8, ®) design with
_4v—-2)(v-3
©= 2(v—4)< 5 )
forv=1,5,7,11,15,17 mod 20.
© There exists a simple 3 — (2v, 10, ©) design with

_5(v—=2)(v-3
872(v—5)( 7 )

forv=0,1,2,6 mod7,andv=0,1,6,7 mod 8, and gcd(v,5) = 1.



APPLICATIONS

F2 Construction Il with n =2, k; = 2.

v,k : integers with v > 2k, k > 3, gcd(v,2k) =1 & gcd(v,k+ 1) = 1.
Cr:2—(v,21) aW =0,V =1,u1 =2, b =v, f = (v—1)/2,
a; = m(Zk %). D1 is a union of a; copies of Cy.
D3: 2 — (v 2k, (3)): A®) = (33), A7) = (5 3), us = 2k, bC) =

_ 1
W3 = 2 (5 41)-
Dyt 2 (v k4L (3 A — (3 AP = (22,03 —k+1,6%) v,

wa = g1 (Vi):



APPLICATIONS

F2 (Cont.)
Set A:=A127 +Ay2;,

where Ay = (a1u3 + AP up —ABIbD)), Ay = (AP uy —ARp(2)),

Then
A = v—3)\v(4k? — 10k +2) + 8k
o= _(Zk—3> 2k —1)(2k—2)
_ v—3\(v—k—1)
o= 2 e

For any integer z; with 1 < z; < w1 we have A = 0 iff

z; = —A1Z1 /A2

e If z, is an integer with z; < ws,then there is a simple
3—(2v,2(k +1),0©) design with

o 2k v—2 S(V=2Y), v—2
*(m(zvz% (zwz)) ”(kfl

)z



APPLICATIONS

F2 (Cont.)

An example: z; = 1.

Then
S v—k—2 k! v(4k? — 10k +2) + 8k
2= k 2k(k+1)...(2k—3) (2k—1)(2k—2)

e If z, is an integer and z, < w3, then there is a simple
3—(2v,2(k+1),0) design with

4k v—2 v—2
®:m<2k—2>+<k—l>(k+l)'zz'



APPLICATIONS

F2 (Cont.) Two special cases: k = 3,4 with z; = 1.

@ There exists a simple 3 — (2v, 8, ®) design with

7
O = %v(v72)(v73)(v75),

forallv=5,17,35,47 mod 60.
® There exists a simple 3 — (2v, 10, ©) design with
e :81v<vg2>/7(v—5),

forallv=7,23,63,111,167,191, 223,231,247 mod 280.



APPLICATIONS

F3 Some more examples

@ There exists a simple 3 — (2v, 5, %(v— 2)(v —3)) design when
v=2 mod®6.

@ There exists a simple 3 — (2v, 7, 2 (“3?)(11v — 52)) design for all
v=4,76,112,148 mod 180.

©® There exists a simple 3 — (2(2f + 1),5,15(2f — 1) design for f odd.

@ There exists a simple 3 — (2(2f + 1), 6, (2f — 1).m) design with
m =5, 30, 35,45,50,75,80 and gcd(f,6) = 1.



(1, 0)-RESOLVABILITY

e For each pair (D;, D, ;) define
o =yub N Ly, b",
e For the pair (Dp,Dp) in Construction Il define
oM = u,b™M.
e Let mq,...,my be integers such that
mio! =mjocl) .= o for ij=1,..., n.
e |fa 3 — (v,2k, A) design D is required in the construction, it is assumed

that D is (1, o)-resolvable.

B Assume that the blocks constructed by using each pair (D;,D,,;) can
be partitioned into 1 — (v, 2k, o) designs. Then the designs obtained
from Constructions | and Il are (1, o)-resolvable.



(1, 0)-RESOLVABILITY

Some examples

m The 3 — (2v,6, %(v— 2)(v—4)(v—5)) designsin F1 are
(1,3v)-resolvable whenv =1,4,5,13,20,28,29,32 mod 36.

m The 3 — (2v, 8, ®) designs with © = %v(v— 2)(v—3)(v—-5), and
v=>5,17,35,47 mod 60 in F2 are (1, 8v)-resolvable.

m The 3 — (2v,10,®) designs with ® = 81v("g2)/7(v— 5), and
v=17,23,63,111,167,191,223,231,247 mod 280 in F2 are
(1,10v)-resolvable, when 16|(v — 7).

m The 3—(2v,5, 3 (v—2)(v—4)) designs in F3 are (1,5v)-resolvable,
when v =2,26,104,128 mod 150.
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