CONSTRUCTION OF SIMPLE 3-DESIGNS USING RESOLUTION

Tran van Trung

Institut für Experimentelle Mathematik Universität Duisburg-Essen

ALCOMA15

Kloster Banz, Germany March 15–20, 2015

OUTLINE

- □ Generic constructions
- □ Applications
- \square (1, σ)-resolvable 3-designs

Definition

A $t-(v,k,\lambda)$ -design (X,\mathbb{B}) is said to be (s,σ) -resolvable if its block set \mathbb{B} can be partitioned into w classes π_1,\ldots,π_w such that (X,π_i) is a $s-(v,k,\sigma)$ design for all $i=1,\ldots,w$, where $1\leqslant s\leqslant t$. Each π_i is called a resolution class

Definition

A $t-(v,k,\lambda)$ -design (X,\mathbb{B}) is said to be (s,σ) -resolvable if its block set \mathbb{B} can be partitioned into w classes π_1,\ldots,π_w such that (X,π_i) is a $s-(v,k,\sigma)$ design for all $i=1,\ldots,w$, where $1\leqslant s\leqslant t$. Each π_i is called a resolution class

Definition

Let D be a $t-(v,k,\lambda)$ design (D may have repeated blocks) admitting a (s,σ) -resolution with π_1,\ldots,π_W as resolution classes. Define a distance between any two classes π_i and π_j by $d(\pi_i,\pi_j)=\min\{|i-j|,w-|i-j|\}$.

- *n* ≥ 1, integer.
- $\{k_1, ..., k_n, k_{n+1}, ..., k_{2n}\}$ and k_i , integers, such that $2 \le k_1 < ... < k_n < k/2$ and $k_i + k_{n+i} = k$ for i = 1, ..., n.

- $n \ge 1$, integer.
- $\{k_1, \ldots, k_n, k_{n+1}, \ldots, k_{2n}\}$ and k, integers, such that $2 \le k_1 < \ldots < k_n < k/2$ and $k_i + k_{n+i} = k$ for $i = 1, \ldots, n$.
- Assume there exist 2n 3-designs $D_i = (X, \mathcal{B}_i)$ with parameters $3 (v, k_i, \lambda^{(i)})$ having a $(1, \sigma^{(i)})$ -resolution such that $w_i = w_{n+i}$ for all $i = 1, \ldots, n$, where w_j is the number of $(1, \sigma^{(j)})$ -resolution classes of D_i .

- *n* ≥ 1, integer.
- $\{k_1, \ldots, k_n, k_{n+1}, \ldots, k_{2n}\}$ and k, integers, such that $2 \le k_1 < \ldots < k_n < k/2$ and $k_i + k_{n+i} = k$ for $i = 1, \ldots, n$.
- Assume there exist 2n 3-designs $D_i = (X, \mathcal{B}_i)$ with parameters $3 (v, k_i, \lambda^{(i)})$ having a $(1, \sigma^{(i)})$ -resolution such that $w_i = w_{n+i}$ for all $i = 1, \ldots, n$, where w_j is the number of $(1, \sigma^{(j)})$ -resolution classes of D_i .
- Also assume that
 - **1** For each pair (D_i, D_{n+i}) , $1 \le i \le n$, either D_i or D_{n+i} has to be simple.

- $n \geqslant 1$, integer.
- $\{k_1, \ldots, k_n, k_{n+1}, \ldots, k_{2n}\}$ and k, integers, such that $2 \le k_1 < \ldots < k_n < k/2$ and $k_i + k_{n+i} = k$ for $i = 1, \ldots, n$.
- Assume there exist 2n 3-designs $D_i = (X, \mathcal{B}_i)$ with parameters $3 (v, k_i, \lambda^{(i)})$ having a $(1, \sigma^{(i)})$ -resolution such that $w_i = w_{n+i}$ for all $i = 1, \ldots, n$, where w_j is the number of $(1, \sigma^{(j)})$ -resolution classes of D_i .
- Also assume that
 - **1** For each pair (D_i, D_{n+i}) , $1 \le i \le n$, either D_i or D_{n+i} has to be simple.
 - 2 If a D_j , $j \in \{i, n+i\}$, is not simple, then D_j is a union of a_j copies of a simple $3 (v, k_j, \alpha^{(j)})$ design C_j , wherein C_j admits a $(1, \sigma^{(j)})$ -resolution. Thus, $\lambda^{(j)} = a_j \alpha^{(j)}$.

• If D_j is not simple, (i.e. D_j is a union of a_j copies of a simple $3-(v,k_j,\alpha^{(j)})$ design C_j , where $P^{(j)}=\{\pi_1^{(j)},\ldots,\pi_{t_j}^{(j)}\}$ is a $(1,\sigma^{(j)})$ -resolution of C_j), then the corresponding $(1,\sigma^{(j)})$ -resolution of D_j is the concatenation of a_j sets $P^{(j)}$. So, the $w_j=a_jt_j$ resolution classes of D_j are of the form

$$\pi_1^{(j)}, \ldots, \pi_{t_j}^{(j)}, \quad \pi_1^{(j)}, \ldots, \pi_{t_j}^{(j)}, \quad \ldots, \quad \pi_1^{(j)}, \ldots, \pi_{t_j}^{(j)}$$

• If D_j is not simple, (i.e. D_j is a union of a_j copies of a simple $3-(v,k_j,\alpha^{(j)})$ design C_j , where $P^{(j)}=\{\pi_1^{(j)},\ldots,\pi_{t_j}^{(j)}\}$ is a $(1,\sigma^{(j)})$ -resolution of C_j), then the corresponding $(1,\sigma^{(j)})$ -resolution of D_j is the concatenation of a_j sets $P^{(j)}$. So, the $w_j=a_jt_j$ resolution classes of D_j are of the form

$$\pi_1^{(j)}, \dots, \pi_{t_j}^{(j)}, \quad \pi_1^{(j)}, \dots, \pi_{t_j}^{(j)}, \quad \dots, \quad \pi_1^{(j)}, \dots, \pi_{t_j}^{(j)}$$

• If $k_1 = 2$, then D_1 is a union of a_1 copies of the trivial 2 - (v, 2, 1) design i.e. D_1 is considered as a 3-design with $\lambda^{(1)} = 0$.

• If D_j is not simple, (i.e. D_j is a union of a_j copies of a simple $3-(v,k_j,\alpha^{(j)})$ design C_j , where $P^{(j)}=\{\pi_1^{(j)},\ldots,\pi_{t_j}^{(j)}\}$ is a $(1,\sigma^{(j)})$ -resolution of C_j), then the corresponding $(1,\sigma^{(j)})$ -resolution of D_j is the concatenation of a_j sets $P^{(j)}$. So, the $w_j=a_jt_j$ resolution classes of D_j are of the form

$$\pi_1^{(j)}, \dots, \pi_{t_j}^{(j)}, \quad \pi_1^{(j)}, \dots, \pi_{t_j}^{(j)}, \quad \dots, \quad \pi_1^{(j)}, \dots, \pi_{t_j}^{(j)}$$

- If $k_1=2$, then D_1 is a union of a_1 copies of the trivial 2-(v,2,1) design i.e. D_1 is considered as a 3-design with $\lambda^{(1)}=0$.
- If necessary, also assume that there exists a $3 (v, k, \Lambda)$ design D = (X, B).

Notation:

- $\pi_1^{(\ell)}, \ldots, \pi_{w_\ell}^{(\ell)}$: the w_ℓ classes in a $(1, \sigma^{(\ell)})$ -resolution of D_ℓ , $\ell = 1, \ldots, 2n$. Recall that $w_{n+h} = w_h$.
- The distance defined on the classes of D_ℓ is then $d^{(\ell)}(\pi_i^{(\ell)},\pi_i^{(\ell)})=\min\{|i-j|,w_\ell-|i-j|\}.$
- $b^{(j)} = \sigma^{(j)} v/k$: the number of blocks in each resolution class of of D_i .
- $u_j = \sigma^{(j)}$: the number of blocks containing a point in each resolution class of of D_j .
- $\lambda_2^{(j)} = \lambda^{(j)} (v-2)/(k_j-2)$: the number of blocks of D_j containing two points.

Construction I

Let $\tilde{D}_i = (\tilde{X}, \tilde{\mathbb{B}}_i)$ be a copy of D_i defined on \tilde{X} such that $X \cap \tilde{X} = \emptyset$. Also let $\tilde{D} = (\tilde{X}, \tilde{\mathbb{B}})$ be a copy of D.

Define blocks on the point set $X \cup \tilde{X}$ as follows:

- I. blocks of D and blocks of \tilde{D} ;
- II. blocks of the form $A \cup \tilde{B}$ for any pair $A \in \pi_i^{(h)}$ and $\tilde{B} \in \tilde{\pi}_j^{(n+h)}$ with $\varepsilon_h \leqslant d^{(h)}(\pi_i^{(h)}, \pi_j^{(h)}) \leqslant s_h$, $\varepsilon_h = 0, 1$, for $h = 1, \ldots, n$;
- III. blocks of the form $\tilde{A} \cup B$ for any pair $\tilde{A} \in \tilde{\pi}_i^{(h)}$ and $B \in \pi_j^{(n+h)}$ with $\varepsilon_h \leqslant d^{(h)}(\pi_i^{(h)}, \pi_j^{(h)}) \leqslant s_h$, $\varepsilon_h = 0, 1$, for $h = 1, \ldots, n$.

Denote $z_h := (2s_h + 1 - \varepsilon_h)$ for h = 1, ..., n.

Verification: CASE $k_i \geqslant 3$

• The blocks containing points $a, b, c \in X$ (resp. $\tilde{a}, \tilde{b}, \tilde{c} \in \tilde{X}$):

$$\Lambda + \sum_{h=1}^{n} z_h \lambda^{(h)} b^{(n+h)} + z_h \lambda^{(n+h)} b^{(h)}$$

• The blocks containing points a, b, \tilde{c} with $a, b \in X$ and $\tilde{c}, \in \tilde{X}$ (resp. \tilde{a}, \tilde{b}, c):

$$\sum_{h=1}^{n} z_{h} \lambda_{2}^{(h)} u_{n+h} + z_{h} \lambda_{2}^{(n+h)} u_{h}$$

The defined blocks will form a 3-design if

$$\Lambda + \sum_{h=1}^{n} z_h \lambda^{(h)} b^{(n+h)} + z_h \lambda^{(n+h)} b^{(h)} = \sum_{h=1}^{n} z_h \lambda_2^{(h)} u_{n+h} + z_h \lambda_2^{(n+h)} u_h,$$

equivalently

$$\Lambda = \sum_{h=1}^{n} \{ (\lambda_{2}^{(h)} u_{n+h} + \lambda_{2}^{(n+h)} u_{h}) - (\lambda_{2}^{(h)} b^{(n+h)} + \lambda_{2}^{(n+h)} b^{(h)}) \} z_{h}.$$

Verification: CASE $K_1 = 2$

The condition for which the defined blocks form a 3-designs becomes

$$\begin{split} \Lambda &= \{a_1 u_{n+1} + \lambda_2^{(n+1)} u_1 - \lambda^{(n+1)} b^{(1)}\} z_1 \\ &+ \sum_{h=2}^n \{(\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)})\} z_h. \end{split}$$

Summary of Construction I

(i) If $k_1 = 2$ and

$$0 = \{a_1 u_{n+1} + \lambda_2^{(n+1)} u_1 - \lambda^{(n+1)} b^{(1)}\} z_1$$

$$+ \sum_{h=2}^{n} \{(\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)})\} z_h, (1)$$

with $1 \leqslant z_h \leqslant w_h$ if both D_h and D_{n+h} are simple and $1 \leqslant z_h \leqslant t_h$ if D_h or D_{n+h} is non-simple, then there exists a $3-(2v,k,\Theta)$ design with

$$\Theta = \{a_1 u_{n+1} + \lambda_2^{(n+1)} u_1\} z_1 + \sum_{h=2}^n \{(\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h)\} z_h.$$

(ii) If $k_1 \geqslant 3$ and

$$0 = \sum_{h=1}^{n} \{ (\lambda_{2}^{(h)} u_{n+h} + \lambda_{2}^{(n+h)} u_{h}) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)}) \} z_{h}, (2)$$

with $1\leqslant z_h\leqslant w_h$ if both D_h and D_{n+h} are simple and $1\leqslant z_h\leqslant t_h$ if D_h or D_{n+h} is non-simple, then there exists a $3-(2v,k,\Theta)$ design with

$$\Theta = \sum_{h=1}^{n} \{ (\lambda_{2}^{(h)} u_{n+h} + \lambda_{2}^{(n+h)} u_{h}) \} z_{h}.$$

Summary of Construction I (Cont.)

(iii) If $k_1 = 2$ and

$$0 < \{a_1 u_{n+1} + \lambda_2^{(n+1)} u_1 - \lambda^{(n+1)} b^{(1)} \} z_1$$

$$+ \sum_{h=2}^{n} \{ (\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)}) \} z_h, (3)$$

with $1 \leqslant z_h \leqslant w_h$ if both D_h and D_{n+h} are simple and $1 \leqslant z_h \leqslant t_h$ if D_h or D_{n+h} is non-simple, further if there is a $3 - (v, k, \Lambda)$ design having

$$\Lambda = \{a_1 u_{n+1} + \lambda_2^{(n+1)} u_1 - \lambda^{(n+1)} b^{(1)} \} z_1
+ \sum_{h=2}^{n} \{(\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)}) \} z_h (4)$$

then there exists a $3 - (2v, k, \Theta)$ design with

$$\Theta = \{a_1 u_{n+1} + \lambda_2^{(n+1)} u_1\} z_1 + \sum_{h=2}^n \{(\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h)\} z_h.$$

Summary of Construction I (Cont.)

(iv) If $k_1 \ge 3$ and

$$0 < \sum_{h=1}^{n} \{ (\lambda_{2}^{(h)} u_{n+h} + \lambda_{2}^{(n+h)} u_{h}) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)}) \} z_{h}, (5)$$

with $1 \leqslant z_h \leqslant w_h$ if both D_h and D_{n+h} are simple and $1 \leqslant z_h \leqslant t_h$ if D_h or D_{n+h} is non-simple, further if there is a $3 - (v, k, \Lambda)$ design having

$$\Lambda = \sum_{h=1}^{n} \{ (\lambda_{2}^{(h)} u_{n+h} + \lambda_{2}^{(n+h)} u_{h}) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)}) \} z_{h}, (6)$$

then there exists a $3 - (2v, k, \Theta)$ design with

$$\Theta = \sum_{h=1}^{n} \{ (\lambda_{2}^{(h)} u_{n+h} + \lambda_{2}^{(n+h)} u_{h}) \} z_{h}.$$

Construction II

Construction II deals with the case $k_n = k/2$.

Take $D_n = D_{2n}$.

Blocks of types I, II, and III are as in Construction I for h = 1, ..., n-1. Define a further type of blocks.

IV. blocks of the form $A \cup \tilde{B}$ for any pair $A \in \pi_i^{(n)}$ and $\tilde{B} \in \tilde{\pi}_j^{(2n)}$ with $\varepsilon_n \leqslant d^{(n)}(\pi_i^{(n)}, \pi_j^{(n)}) \leqslant s_n$, $\varepsilon_n = 0, 1$.

Summary of Construction II

(i) If $k_1 = 2$ and

$$0 = (a_1 u_{n+1} + \lambda_2^{(n+1)} u_1 - \lambda^{(n+1)} b^{(1)}) z_1 + (\lambda_2^{(n)} u_n - \lambda^{(n)} b^{(n)}) z_n$$

$$+ \sum_{h=2}^{n-1} \{ (\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)}) \} z_h, (7)$$

with $1 \le z_h \le w_h$ if both D_h and D_{n+h} are simple and $1 \le z_h \le t_h$ if D_h or D_{n+h} is non-simple, then there exists a $3 - (2v, k, \Theta)$ design with

$$\Theta = (a_1 u_{n+1} + \lambda_2^{(n+1)} u_1) z_1 + (\lambda_2^{(n)} u_n) z_n + \sum_{h=2}^{n-1} \{(\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h)\} z_h.$$

(ii) If $k_1 \geqslant 3$ and

$$0 = (\lambda_2^{(n)} u_n - \lambda^{(n)} b^{(n)}) z_n$$

$$+ \sum_{h=1}^{n-1} \{ (\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)}) \} z_h, (8)$$

with $1 \le z_h \le w_h$ if both D_h and D_{n+h} are simple and $1 \le z_h \le t_h$ if D_h or D_{n+h} is non-simple, then there exists a $3 - (2v, k, \Theta)$ design with

$$\Theta = (\lambda_2^{(n)} u_n) z_n + \sum_{h=1}^{n-1} \{ (\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h) \} z_h.$$

Summary of Construction II (Cont.)

(iii) If $k_1 = 2$ and

$$0 < (a_1 u_{n+1} + \lambda_2^{(n+1)} u_1 - \lambda^{(n+1)} b^{(1)}) z_1 + (\lambda_2^{(n)} u_n - \lambda^{(n)} b^{(n)}) z_n$$

$$+ \sum_{h=2}^{n-1} \{ (\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)}) \} z_h, (9)$$

with $1 \le z_h \le w_h$ if both D_h and D_{n+h} are simple and $1 \le z_h \le t_h$ if D_h or D_{n+h} is non-simple, further if there is a $3 - (v, k, \Lambda)$ design having

$$\Lambda = (a_1 u_{n+1} + \lambda_2^{(n+1)} u_1 - \lambda^{(n+1)} b^{(1)}) z_1 + (\lambda_2^{(n)} u_n - \lambda^{(n)} b^{(n)}) z_n$$

$$+ \sum_{h=2}^{n-1} \{ (\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)}) \} z_h$$
 (10)

then there exists a $3 - (2v, k, \Theta)$ design with

$$\Theta = (a_1 u_{n+1} + \lambda_2^{(n+1)} u_1) z_1 + (\lambda_2^{(n)} u_n) z_n + \sum_{h=2}^{n-1} \{(\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h)\} z_h.$$

Summary of Construction II (Cont.)

(iv) If $k_1 \geqslant 3$ and

$$\begin{array}{ll} 0 & < & (\lambda_2^{(n)} u_n - \lambda^{(n)} b^{(n)}) z_n \\ & & + \sum_{h=1}^{n-1} \{ (\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)}) \} z_h \\ \end{array}$$

with $1 \le z_h \le w_h$ if both D_h and D_{n+h} are simple and $1 \le z_h \le t_h$ if D_h or D_{n+h} is non-simple, further if there is a $3 - (v, k, \Lambda)$ design having

$$\Lambda = (\lambda_2^{(n)} u_n - \lambda^{(n)} b^{(n)}) z_n
+ \sum_{h=1}^{n-1} \{ (\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h) - (\lambda^{(h)} b^{(n+h)} + \lambda^{(n+h)} b^{(h)}) \} z_h (12)$$

then there exists a $3 - (2v, k, \Theta)$ design with

$$\Theta = (\lambda_2^{(n)} u_n) z_n + \sum_{h=1}^{n-1} \{ (\lambda_2^{(h)} u_{n+h} + \lambda_2^{(n+h)} u_h) \} z_h.$$

For applications of Constructions I and II we implicitly use the following result and observation.

- **Baranyai-Theorem** The trivial k (v, k, 1) design is (1,1)-resolvable (i.e. having a parallelism) if and only if k|v.
- **Block orbits** If gcd(v,k) = 1, then the k (v,k,1) design is (1,v)-resolvable. (The resolvable classes are the block orbits of a fixed point free automorphism of order v.)

F1 Construction II with n = 1.

v,k: integers with $v>k\geqslant 3$ and $\gcd(v,k)=1$. D_1 : the complete design $3-(v,k,\binom{v-3}{k-3})$. Then $\lambda^{(1)}=\binom{v-3}{k-3}$, $\lambda^{(1)}_2=\binom{v-2}{k-2}$, $u_1=k$, $b^{(1)}=v$, and $w_1=\binom{v-1}{k-1}/k$.

D: $3 - (v, 2k, \Lambda)$.

Construction II yields a simple 3-design $3 - (2v, 2k, \Theta)$ when it holds

$$(\lambda_2^{(1)}u_1 - \lambda^{(1)}b^{(1)})z_1 = \Lambda,$$

or

$$z_1 = \Lambda/2 \binom{v-3}{k-2}$$
 is an integer,

with $z_1 \leqslant \binom{v-1}{k-1}/k$. Then

$$\Theta = \lambda_2^{(1)} u_1 z_1 = \frac{k(v-2)\Lambda}{2(v-k)}.$$

F1 (Cont.)

Take the complete design D: $3 - (v, 2k, \Lambda) := 3 - (v, 2k, \binom{v-3}{2k-3})$.

If

$$z_1 = {v-3 \choose 2k-3}/2{v-3 \choose k-2}$$
 is an integer,

with $z_1 \leq {\binom{v-1}{k-1}}/k$. Then there is a simple $3 - (2v, 2k, \Theta)$ design with

$$\Theta = \frac{k(v-2)}{2(v-k)} \binom{v-3}{2k-3}.$$

- **F1** Some special cases: k = 3, 4, 5.
 - 1 There exists a simple $3 (2v, 6, \Theta)$ design with

$$\Theta = \frac{3(v-2)}{2(v-3)} \binom{v-3}{3},$$

for $v \equiv 1, 4, 5, 8 \mod 12$.

2 There exists a simple $3 - (2v, 8, \Theta)$ design with

$$\Theta = \frac{4(v-2)}{2(v-4)} \binom{v-3}{5},$$

for $v \equiv 1, 5, 7, 11, 15, 17 \mod 20$.

3 There exists a simple $3 - (2v, 10, \Theta)$ design with

$$\Theta = \frac{5(v-2)}{2(v-5)} \binom{v-3}{7},$$

for $v \equiv 0, 1, 2, 6 \mod 7$, and $v \equiv 0, 1, 6, 7 \mod 8$, and gcd(v, 5) = 1.

F2 Construction II with n = 2, $k_1 = 2$.

v, k: integers with $v > 2k, k \ge 3$, gcd(v, 2k) = 1 & gcd(v, k + 1) = 1.

 C_1 : 2 - (v, 2, 1); $\alpha^{(1)} = 0$, $\alpha_2^{(1)} = 1$, $u_1 = 2$, $b^{(1)} = v$, $t_1 = (v-1)/2$,

 $a_1 = \frac{1}{k(2k-1)} \binom{v-2}{2k-2}$. D_1 is a union of a_1 copies of C_1 .

 $D_3: 2-(v,2k,\binom{v-3}{2k-3}); \lambda^{(3)}=\binom{v-3}{2k-3}, \lambda^{(3)}_2=\binom{v-2}{2k-2}, u_3=2k, b^{(3)}=v,$

 $W_3 = \frac{1}{2k} {\binom{v-1}{2k-1}}.$

 D_2 : 2 - $(v, k+1, {v-3 \choose k-2})$; $\lambda^{(2)} = {v-3 \choose k-2}$, $\lambda^{(2)}_2 = {v-2 \choose k-1}$, $u_2 = k+1$, $b^{(2)} = v$.

 $W_2 = \frac{1}{(v-1)} {v-1 \choose k}$.

Set
$$A := A_1 z_1 + A_2 z_2$$
,

where $A_1=(a_1u_3+\lambda_2^{(3)}u_1-\lambda^{(3)}b^{(1)}),\quad A_2=(\lambda_2^{(2)}u_2-\lambda^{(2)}b^{(2)}).$ Then

$$\begin{array}{lcl} A_1 & = & -\binom{v-3}{2k-3}\frac{v(4k^2-10k+2)+8k}{(2k-1)(2k-2)}, \\ A_2 & = & 2\binom{v-3}{k-2}\frac{(v-k-1)}{(k-1)}. \end{array}$$

For any integer z_1 with $1 \leqslant z_1 \leqslant w_1$ we have A = 0 iff

$$z_2 = -A_1 z_1/A_2$$

• If z_2 is an integer with $z_2 \le w_2$, then there is a simple $3 - (2v, 2(k+1), \Theta)$ design with

$$\Theta = \left(\frac{2k}{k(2k-1)}\binom{v-2}{2k-2} + 2\binom{v-2}{2k-2}\right)z_1 + \binom{v-2}{k-1}z_2.$$

F2 (Cont.)

An example: $z_1 = 1$. Then

$$z_2 = \binom{v-k-2}{k} \frac{k!}{2.k(k+1)\dots(2k-3)} \frac{v(4k^2-10k+2)+8k}{(2k-1)(2k-2)}.$$

• If z_2 is an integer and $z_2 \le w_2$, then there is a simple $3 - (2v, 2(k+1), \Theta)$ design with

$$\Theta = \frac{4k}{(2k-1)} \binom{v-2}{2k-2} + \binom{v-2}{k-1} (k+1).z_2.$$

F2 (Cont.) Two special cases:
$$k = 3, 4$$
 with $z_1 = 1$.

1 There exists a simple $3 - (2v, 8, \Theta)$ design with

$$\Theta = \frac{7}{30}v(v-2)(v-3)(v-5),$$

for all $v \equiv 5, 17, 35, 47 \mod 60$.

2 There exists a simple $3 - (2v, 10, \Theta)$ design with

$$\Theta = 81v \binom{v-2}{6} / 7(v-5),$$

for all $v \equiv 7, 23, 63, 111, 167, 191, 223, 231, 247 \mod 280$.

F3 Some more examples

- 1 There exists a simple $3 (2v, 5, \frac{3}{4}(v-2)(v-3))$ design when $v \equiv 2 \mod 6$.
- 2 There exists a simple 3 $-(2v, 7, \frac{5}{48} {v^{-2} \choose 3} (11v 52))$ design for all $v \equiv 4, 76, 112, 148 \mod 180$.
- 3 There exists a simple $3 (2(2^f + 1), 5, 15(2^f 1))$ design for f odd.
- 4 There exists a simple $3 (2(2^f + 1), 6, (2^f 1).m)$ design with m = 5, 30, 35, 45, 50, 75, 80 and gcd(f, 6) = 1.

$(1, \sigma)$ -RESOLVABILITY

• For each pair (D_i, D_{n+i}) define

$$\sigma^{(i)} = u_i b^{(n+i)} + u_{n+i} b^{(i)}$$
.

• For the pair (D_n, D_n) in Construction II define

$$\sigma^{(n)}=u_nb^{(n)}.$$

• Let m_1, \ldots, m_n be integers such that

$$m_i \sigma^{(i)} = m_i \sigma^{(j)} := \sigma \text{ for } i, j = 1, \dots, n.$$

- If a $3 (v, 2k, \Lambda)$ design D is required in the construction, it is assumed that D is $(1, \sigma)$ -resolvable.
- Assume that the blocks constructed by using each pair (D_i,D_{n+i}) can be partitioned into $1-(v,2k,\sigma)$ designs. Then the designs obtained from Constructions I and II are $(1,\sigma)$ -resolvable.

$(1, \sigma)$ -RESOLVABILITY

Some examples

- The $3 (2v, 6, \frac{1}{4}(v-2)(v-4)(v-5))$ designs in **F1** are (1, 3v)-resolvable when $v \equiv 1, 4, 5, 13, 20, 28, 29, 32 \mod 36$.
- The $3 (2v, 8, \Theta)$ designs with $\Theta = \frac{7}{30}v(v-2)(v-3)(v-5)$, and $v \equiv 5, 17, 35, 47 \mod 60$ in **F2** are (1, 8v)-resolvable.
- The $3 (2v, 10, \Theta)$ designs with $\Theta = 81v\binom{v-2}{6}/7(v-5)$, and $v \equiv 7, 23, 63, 111, 167, 191, 223, 231, 247 \mod 280$ in **F2** are (1, 10v)-resolvable, when 16|(v-7).
- The $3 (2v, 5, \frac{3}{4}(v-2)(v-4))$ designs in **F3** are (1, 5v)-resolvable, when $v \equiv 2, 26, 104, 128 \mod 150$.

References

J. Bierbrauer, TvT. Shadow and shade of designs $4 - (2^f + 1, 6, 10)$ (1992) unpublished manuscript.

M. Jimbo, Y. Kunihara, R. Laue, M. Sawa. Unifying some known infinite families of combinatorial 3-designs. *J. Combin. Theory, Ser.A* **118** (2011) 1072–1085.

R. Laue. Resolvable t-designs. Des. Codes Cryptogr. **32** (2004) 277–301.

TvT. Recursive constructions for 3-designs and resolvable 3-designs, *J. Statist. Plann. Inference* **95** (2001), 341–358.

TvT. Construction of 3-designs using parallelism, J. Geom. **67** (2000) 223–235