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Example ( abelian)

Let G = Zy X Zp X Zp X Zy be the elementary abelian group of
order 16. Its subset

D = {(0,0,0,0), (1,0,0,0), (0,1,0,0),
(0,0,1,0), (0,0,0,1), (1,1,1,1)}

is a (16, 6,2) difference set, which can be verified easily.
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forall ¢ € S, if and only if D is a (v, k, A) difference set in G.
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(pks(xmys) — 2mk(_1)ls7 € = exp(
k=0,1,2,...,229t1 _1 [/=0,1
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The same is true if we look at another set of 15 homomorphisms
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Sokl(x) — 62k7 80/(1()/) = —1, k = 1, coog ]_5, 632 = 1,
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Definition Let ¢ be a root of unity and f(e) =3, ke € Z[e].
If there is some ¢, such that |f(eP)| = ¢, for all integers p, then we
say that f(¢) is norm invariant, of norm c.
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Theorem (norm invariance) Let f(n) =n" +---4+n' be a norm
invariant polynomial of norm 29 where g = 29(29+1 — 1) and 7 is
a root of unity of order 229%2. Let 2" = max{o(n7)}. Then for
every k =0,1,2,...,n— 1 there is an r()) € Z such that

f(772k) = 299/t We call such polynomials f(772k) maximally
abbreviated.
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we can write
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we can write

X = X1'X52 ... x5 for some integer o;'s.
(PX;HX;QWX?% G~ C by

i BB ) = g
Put |G/G'| = 2% and

2°—1 251
D = U(DﬂakG’): U{akhl,akhz,...,akhwk}.
k=0 k=0

Clearly, wyx > 0 and wy < |G'| < 29.
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Z WkQOX‘J‘l ap "X?t (giBlngBM . -g{’Btk h) —

2 : Wkgalﬂlk a2 B2k ‘_eiltﬂtk’

where ax = H 6”‘

Thus, because of |¢,(D)| =29 we have

25—1
§ : Wkgtlllﬁuggézﬂzk . Ettltﬂtk _ 2d7
k=0
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Now, we can take for example

ar=ap=---=a; 1 =0, while a; #0

and still we get norm invariant polynomial in one variable,

thus there must be some wj such that wy > 29. A contradiction.

Theorem: Let G be a group of order 224+2_If |G : G'| > 2912
then G is not a Hadamard group.

If H<1 G such that |G| = 2292 and |H| < 29 and G/H is cyclic,
then G’ < H (because G/H is abelian),

and by previous result we have claim of cyclic case.
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