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Classical coding theory: a code is a set of vectors over a finite field Fq.

Subspace code: a code is a set of subspaces of a vector space over Fq.

This talk is on error-correction in certain subspace codes.
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Notation.

Rank will denote the dimension of a vector space, and

Dimension will denote the dimension of a projective space.

Let V = V (n + 1,Fq) be a vector space of rank n+ 1 over the finite field
Fq.

The Grassmannian Grq(k + 1, n + 1) is the set of subspaces of rank k + 1
of V .

A subspace of V (n+ 1,Fq) of rank k + 1 corresponds to a projective
subspace of dimension k of the projective geometry
PG (n,Fq) := P(V (n + 1,Fq)).

Example. V (4,Fq) and PG (3,Fq)

Grassmannian In V (4,Fq) In PG (3,Fq)

Grq(1, 4) Rank 1 Dim 0 (Points)
Grq(2, 4) Rank 2 Dim 1 (Lines)
Grq(3, 4) Rank 3 Dim 2 (Planes).

Klara Stokes



The Plücker embedding is a map

Pl : Gr(n+ 1, k + 1) → P

(

∧k+1 V (n + 1,Fq)
)

〈v1, . . . , vk+1〉 7→ [v1 ∧ · · · ∧ vk+1]

embedding the Grassmannian in the projectivisation of the exterior algebra
∧k+1

V (n + 1,Fq).

∧k+1
V (n + 1,Fq) is a vector space of rank

(

n+1
k+1

)

, and its non-zero

directions is PG (
(

n+1
k+1

)

− 1,Fq).

It is well-known that the Plücker embedding makes the Grassmannian a
smooth algebraic variety of PG (

(

n+1
k+1

)

− 1,Fq) defined by the intersection
of quadrics.

Its points are the totally decomposable vectors of
∧k+1

V (n + 1,Fq).
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Example.
The Grassmannian

Grq(2, 4) = {〈u, v〉 : u 6= v ∈ V (4,Fq)},

of lines in PG (3,Fq), is embedded in PG (5,Fq) with Plücker coordinates

Q =

{

(x01 : x02 : x03 : x12 : x13, x23) : xij = det

(

ui uj
vi vj

)}

.

The points in Q are the points on the Klein quadric defined by

x01x23 − x02x13 + x03x12 = 0.

This is a hyperbolic quadric in PG (5,Fq).
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A subspace code is a set of projective subspaces of PG (n,Fq).

A constant-dimension subspace code of rank (vector dimension) k + 1
is a subspace code contained in the Grassmannian Grq(k + 1, n + 1),
(i.e. a set of projective subspaces of dimension k).

As in classical coding theory, error-correction in subspace codes requires
the codewords to be taken well-separated according to some distance.

The subspace distance between two subspaces A,B in a vector space V :

d(A,B) = dim(A) + dim(B)− 2 dim(A ∩ B).

It measures the shortest distance between A and B in the inclusion lattice
of projective subspaces of PG (n,Fq).

Example. In V = PG (3,Fq) the maximal possible distance between two
codewords is 4, and this bound is attained by a set of lines with pairwise
empty intersection.
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A spread in PG (3,Fq) is a set of lines such every point belongs to exactly
one of the lines.

In general, a spread (t-spread) in PG (n,Fq) is a set of subspaces of
dimension t forming a partition of the point set.

There is a t-spread in PG (n,Fq) if and only if (t + 1)|(n + 1).

Spreads (and partial spreads) have been used as subspace codes for
network coding [Manganiello-Gorla-Rosenthal 2008].

There exist several decoding algorithms.
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A planar spread is a t-spread in PG (n,Fq) such that 2(t + 1) = (n + 1).

A planar spread defines a translation plane. If this plane is Desarguesian,
then the spread is called Desarguesian.

Desarguesian spreads make good codes.

It is “well-known” that a Desarguesian spread is represented in the
Grassmannian by a complete intersection of Grq(t + 1, n + 1) with a linear
subspace of

∧t+1
V (n + 1,Fq) of rank 2t [i.e. Havlicek, or Lunardon].

Projectively this intersection is a cap in the intersecting subspace
U ∼= PG (2t − 1,Fq): a set of points of which no three are collinear.
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As we saw before, a line L in PG (3,Fq) corresponds to a point pL in the
Grassmannian Grq(2, 4), which is a projective algebraic variety known as
the Klein quadric defined by

x01x23 − x02x13 + x03x12 = 0.

The coordinates of the point pL is given by the Plücker embedding

Pl(〈u, v〉) = (x01 : x02 : x03 : x12 : x13, x23)

where

xij = det

(

ui uj
vi vj

)

.

A spread S in PG (3,Fq) is represented through this embedding as a
smooth intersection between Pl(Grq(2, 4)) and a linear subspace
U ∼= PG (3,Fq).
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Let Q : x01x23 − x02x13 + x03x12 = 0 and U :

{

x01 + x23 = 0
x02 − x13 = 0.

If q = 3 then Q ∩ U consists of the following points in PG (5, 3):

pL1 = (0 : 0 : 2 : 0 : 0 : 0) pL2 = (1 : 0 : 1 : 1 : 0 : 2)
pL3 = (1 : 1 : 2 : 1 : 1 : 2) pL4 = (1 : 2 : 2 : 1 : 2 : 2)
pL5 = (1 : 0 : 2 : 2 : 0 : 2) pL6 = (1 : 1 : 1 : 2 : 1 : 2)
pL7 = (1 : 2 : 1 : 2 : 2 : 2) pL8 = (0 : 2 : 2 : 2 : 2 : 0)
pL9 = (0 : 2 : 1 : 1 : 2 : 0) pL10 = (0 : 0 : 0 : 2 : 0 : 0)

which are the Plücker coordinates of the following lines in PG (3, 3):

L1 = {(1 : 0 : 0 : 0), (0 : 0 : 0 : 1), (1 : 0 : 0 : 1), (2 : 0 : 0 : 1)},
L2 = {(2 : 1 : 1 : 1), (2 : 0 : 1 : 0), (0 : 1 : 0 : 1), (1 : 1 : 2 : 1)},
L3 = {(1 : 2 : 1 : 0), (0 : 2 : 2 : 1), (2 : 0 : 1 : 1), (1 : 1 : 0 : 1)},
L4 = {(2 : 1 : 0 : 1), (0 : 2 : 1 : 1), (1 : 1 : 1 : 0), (1 : 0 : 2 : 1)},
L5 = {(0 : 2 : 0 : 1), (1 : 0 : 1 : 0), (1 : 2 : 1 : 1), (2 : 2 : 2 : 1)},
L6 = {(2 : 2 : 1 : 0), (1 : 2 : 0 : 1), (2 : 0 : 2 : 1), (0 : 1 : 1 : 1)},
L7 = {(0 : 1 : 2 : 1), (2 : 2 : 0 : 1), (1 : 0 : 1 : 1), (2 : 1 : 1 : 0)},
L8 = {(1 : 1 : 1 : 1), (2 : 2 : 1 : 1), (0 : 0 : 1 : 1), (1 : 1 : 0 : 0)},
L9 = {(2 : 1 : 2 : 1), (1 : 2 : 2 : 1), (0 : 0 : 2 : 1), (2 : 1 : 0 : 0)},
L10 = {(0 : 0 : 1 : 0), (0 : 1 : 0 : 0), (0 : 1 : 1 : 0), (0 : 2 : 1 : 0)}
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The Klein quadric, being a hyperbolic quadric in five dimensions, contains
points, lines and planes (but no 3-spaces). The planes can be partitioned
into two classes (called Greek and Latin) using the relation:

π1 ∼ π2 ⇔ π1 = π2 or π1 ∩ π2 is a point

The set of lines through a given a point p in PG (3,Fq) defines a
Latin plane.

The set of lines contained in a given plane P in PG (3,Fq) defines a
Greek plane.

The Klein correspondence
In PG (3,Fq) In PG (5,Fq)

Lines ⇔ Points contained in the Klein quadric
Points ⇔ Latin planes contained in the Klein quadric
Planes ⇔ Greek planes contained in the Klein quadric
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Let Q be the Klein quadric and let U be the 3-dimensional subspace
defining the Plücker coordinates of the spread Q ∩ U.

Decoding algorithm
PG (3,Fq) PG (5,Fq)

Send a spread line L ⇔ Point pL ∈ Q ∩ U

Receive L with 1 error ⇒ Plane π ⊆ Q.
(point or plane)

Line L that was sent. ⇐ Calculate π ∩ U = PL
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Let Q be the Klein quadric and let U be the 3-dimensional subspace
defining the Plücker coordinates of the spread Q ∩ U.

Decoding algorithm
PG (3,Fq) PG (5,Fq)

Send a spread line L ⇔ Point pL ∈ Q ∩ U

Receive L with 1 error ⇒ Plane π ⊆ Q.
(point or plane)

Line L that was sent. ⇐ Calculate π ∩ U = PL

How? Just solve a system of two linear equations.
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Sent data: spread line L.

Received data: L with “one error down in dimension”, i.e. a point
p = (p0 : p1 : p2 : p3) ∈ L, represented by the vector
(p0, p1, p2, p3) ∈ V (Fq, 4) = 〈e0, e1, e2, e3〉.

How do we send the point p to the Grassmannian of lines?

Send the 4 lines through p in the directions of the base vectors!

q0 = p ∧ e0 = (−p1 : −p2 : −p3 : 0 : 0 : 0)
q1 = p ∧ e1 = (p0 : 0 : 0 : −p2 : −p3 : 0)
q2 = p ∧ e2 = (0 : p0 : 0 : p1 : 0 : −p3)
q3 = p ∧ e3 = (0 : 0 : p0 : 0 : p1 : p2)

Only 3 points are linearly independent, so their span X = 〈q0, q1, q2, q3〉 is
a plane in PG (5,Fq) contained in the Grassmannian.
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Let x ∈ X = 〈q0, q1, q2, q3〉, then

x = (bp0 − ap1 : cp0 − ap2 : dp0 − ap3 : cp1 − bp2 : dp1 − bp3 : dp2 − cp3)

for some a, b, c , d .

Apply the equations definining U:

{

bp0 − ap1 + dp2 − cp3 = 0
cp0 − dp1 − ap2 + bp3 = 0

But these are the defining equations (in a, b, c , d) of the sent line L!

What have we done?

We used the coordinates of the received point p = (p0 : p1 : p2 : p3) ∈ L

as coefficients of the equations defining L following the rules given by the
defining equations of the spread.

No need passing over Plücker coordinates. Just plug in p1, p2, p3, p4.
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In the lattice of subspaces of PG (n,Fq) two t-spread elements only meet
in the empty set. Therefore their distance is twice their height in the
lattice, i.e. 2t + 2.

A t-spread subspace code in PG (n,Fq) can correct at most t errors.

A line spread in PG (3,Fq) can only correct one error. To correct more
errors we need more dimension.
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We would like an incidence correspondence in Grq(t + 1, 2(t + 1)),
analogous to the Klein correspondence, for generalizing the decoding
algorithm to t-spreads.

Note:

Let A be a subspace of rank m + 1 ≤ t + 1 of V (2(t + 1),Fq).

Let Ω(A) be the space of subspaces of rank t + 1 intersecting A in a
subspace of rank x > 0.

Then Ω(A) is a Schubert variety.

A Schubert variety is a linear section of the Plücker embedding of the
Grassmannian.
OBS! In general not a linear variety!
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Let S be a t-spread code of PG
(

(

2(t+1)
t+1

)

− 1,Fq

)

, represented in the

Grassmannian by the intersection of the linear subspace U ∼= PG (2t ,Fq)
and Pl(Gr(t + 1, 2(t + 1))).

Decoding algorithm
To decode a codeword sent as C ∈ S and received as a subspace A

satisfying d(C ,A) < t + 1:

Send A to Pl(A) ⊆ Pl(Gr(t + 1, 2(t + 1))) ⊆ PG
(

(

2(t+1)
t+1

)

− 1,Fq

)

and consider its span 〈Pl(A)〉.

Calculate H = 〈Pl(A)〉 ∩ U. Then H will be a linear subspace of
PG (

(2(t+1)
t+1

)

− 1,Fq).

Calculate H ∩ Pl(Gr(t + 1, 2(t + 1)))) (if necessary).
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In practice, to send a subspace A = 〈v0, . . . , vm〉 of rank m + 1 ≤ t + 1 of
V (2(t + 1), t + 1) to Pl(Gr(2(t + 1), t + 1)):

take the 2(t + 1) basis vectors e1, . . . , e2(t+1) of V , and

calculate (if non-zero)

Qi = v0 ∧ · · · ∧ vm ∧ ei1 ∧ · · · ∧ eit−m

where the multiindexes i = (i1, . . . , it−m) run over all
(

2(t+1)
t−m

)

combinations of (t −m) of the basis vectors.
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In practice, to send a subspace A = 〈v0, . . . , vm〉 of rank m + 1 ≤ t + 1 of
V (2(t + 1), t + 1) to Pl(Gr(2(t + 1), t + 1)):

take the 2(t + 1) basis vectors e1, . . . , e2(t+1) of V , and

calculate (if non-zero)

Qi = v0 ∧ · · · ∧ vm ∧ ei1 ∧ · · · ∧ eit−m

where the multiindexes i = (i1, . . . , it−m) run over all
(

2(t+1)
t−m

)

combinations of (t −m) of the basis vectors.

These points span the linear subspace 〈Pl(A)〉 intersecting
Pl(Gr(2(t + 1), t + 1)).

By precalculating the points Qi for a generic subspace A (as we did for the
Klein quadric), we can calculate H = 〈Pl(A)〉 ∩ U by solving a set of

dim(U⊥) =

(

2t + 2

t + 1

)

− 2t

linear equations with coefficients from the vectors spanning A.

Only one of the points in H is totally decomposable.
That is the sent spread-codeword C .
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Thank you for listening!
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