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LDPC Codes

Binary Linear Error-Correcting Code
• Can be defined by means of its parity-check matrix H
• The null-space of the m × n binary parity-check matrix H defines the set
of all codewords: C =

{
x ∈ {0, 1}n : xHT = 0

}
LDPC Codes

• If H is sparse the code is called Low-Density Parity-Check (LDPC) code
• Codes with constant row weight d (called check node degree) are called
check-regular

• Codes with constant row weight d and constant column weight dv
(called variable node degree) are called regular
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Channel Estimation

Channel State Information (CSI)
• CSI at the receiver, i.e. knowledge of parameters like the crossover
probability ρ or the signal-to-noise ratio, is often assumed when
discussing forward error corection

• Of interest for prediction of successful decoding attempts

Estimating Channel Parameters
• The problem: Analyze estimation of CSI based on the syndrome of a
linear code

• Syndrome computation: The receiver performs a hard decision on the
receiver signal, thereby converting the channel to a binary symmetric
channel (BSC)

• CSI of original channel: Derived from the estimated crossover
probability of this BSC
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Channel Estimation in Other Domains

Codes for Information Reconciliation in Quantum Cryptography
1. Assume Alice and Bob have obtained correlated vectors, xA and

xB = xA ⊕ e, resp., where e is the errorword (of low weight)
2. Then Alice calculates the syndrome sA := xAHT of her vector xA and an

LDPC code with parity-check matrix H and sends sA on an error-free
channel to Bob

3. If the quantum bit error rate ρ has not been too large (otherwise the
decoder fails), Bob can reconstruct xA from xB and sA

Can Bob use the Syndrome for Further Purposes?
• Yes, Bob can calculate the syndrome s of the error word as

s := eHT = (xA ⊕ xB) HT = sA ⊕ xBHT

• and estimate the bit error rate before he starts decoding!
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Related Work on Channel Estimation

Recent Approaches for Channel Estimation
• CSI Estimation from LDPC Codes (Lechner and Pacher, 2013)
• Estimation of the bit error probability of received packets (Chen et al.,
2012)

• Estimation for Quantum Error Correcting Codes (Fujiwara et al., 2013)

Plan of this Talk
1. Exploit regularity conditions of LDPC Codes used for channel parameters

estimation via structured classes of combinatorial designs
2. Optimize the parameters of combinatorial designs in terms of bit error

estimators (analytical results vs. numerical simulations)
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Mean and Variance of Syndrome Weight
Computation of Mean of Syndrome Weight (Distribution)
Let Ii be the set of the indices of those variable nodes adjacent to check node
i (e.g. si =

⊕
j∈Ii

ej), and let w = wt(s) be the syndrome weight:

• w =
∑m

i=1 si (weight), E [w ] =
∑m

i=1 E [si ] (expectation value of
syndrome weight = the expectation value of the sum of syndrome bits)

• E [si ] = P(si = 1) =
∑

k∈Nodd
0≤k≤|Ii |

(|Ii |
k

)
ρk (1−ρ)|Ii |−k = 1−(1−2ρ)|Ii |

2 =: f|Ii |(ρ)

(sum over all error-patterns with an odd number of 1s)

Computing the Variance of Syndrome Weight (Distribution)
Same assumptions as before:

• V [w ] = E
[
w2]− (E [w ])2 = E

[
w2]− (

∑m
i=1 E [si ])

2

• E
[
w2] = E

[(∑m
i=1 si

)
·
(∑m

j=1 sj

)]
=
∑m

i,j=1 E [si · sj ]

• E [si · sj ] = P(si = 1 ∧ sj = 1) =
f|Ii\Ij |(ρ)f|Ij\Ii |(ρ) + f|Ii∩Ij |(ρ)

[
1− f|Ii\Ij |(ρ)− f|Ij\Ii |(ρ)

]
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Exact Mean and Variance of Syndrome Weight
The case of LDPC Codes
For a check-regular LDPC code with check degree (row weight) d :

• |Ii | = |Ij | = d , |Ii\Ij | = |Ij\Ii | = d − cij , cij := |Ii ∩ Ij | = cji (number of
overlaps of two rows in the parity-check matrix H of the LDPC code)

• E [si · sj ] = f 2
d−cij (ρ) + fcij (ρ)

(
1− 2fd−cij (ρ)

)
= fd (ρ)− 1

2 f2(d−cij )(ρ)

• V [w ] =
∑m

i,j=1 E [si · sj ]−(m fd (ρ))2 = 1
2

(
m2f2d (ρ)−

∑m
i,j=1 f2(d−cij )(ρ)

)
Exact Form for the Variance of Syndrome Weight

• Let gk :=
∣∣{(i , j) ∈ {1, . . . ,m}2|cij = k}

∣∣ be the number of all ordered
pairs of check nodes which share exactly k variable nodes

• Assuming that all rows of H are distinct ( =⇒ gd = m):

V [w ] = m fd (ρ) (1− fd (ρ))︸ ︷︷ ︸
:=V[w ]i.i.d

variance for i.i.d. syndrome bits

+
1
2

d−1∑
k=1

gk
(
f2d (ρ)− f2(d−k)(ρ)

)
︸ ︷︷ ︸

correction term for dependent syndrome bits 8/20



Regularity Conditions for LDPC Codes
Minimum of the Variance of Syndrome Weight
The V [w ] attains its minimum if gk = 0 for 2 ≤ k ≤ d − 1

Tanner Graph
1. The Tanner graph of an m× n parity check matrix H is a bipartite graph

consisting of n variable nodes (vertices) (each corresponding to one
column of H) and m check nodes (each corresponding to one row =
check equation of H)

2. An edge connects check node i with variable node j iff the variable node
is checked by the corresponding parity-check equation, i.e. if Hij = 1

Cycles for Tanner Graphs of LPDC Codes
• If there exist (at least) two check nodes that share two variable nodes we
have g2 ≥ 1

• In the Tanner graph of the LDPC code these four nodes will form a
4-cycle 9/20



LDPC Codes from Combinatorial Designs

Parity-Check Matrices as Incidence Matrices
The parity-check matrix of a regular LDPC code can also be regarded as a
sparse incidence matrix of an incomplete block design (IBD)

Incomplete Block Designs
• An IBD of size (v , k, r) is an arrangement of v points set out in blocks
of size k (< v) such that each point occurs in exactly r blocks

• The number of blocks will be b, where bk = vr

Correspondence of IBDs and LDPC Codes
• The incidence matrix D of an IBD(v , k, r) has size v × b and constant
row and column weights equal to r and k, respectively

• In that case, the blocks of the design form the columns of the v × b
parity-check matrix H of a regular LDPC code with d = r and dv = k

• Blocks ≡ variable nodes and points ≡ check nodes
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Example of an IBD with 4-cycles

An IBD(v = 4, k = 2, r = 4)

• Has 4×4
2 = 8 blocks

• B = {{0, 3}, {2, 1}, {0, 2}, {1, 3}, {0, 1}, {2, 3}, {0, 1}, {2, 3}}

The 4× 8 Incidence Matrix D of an IBD(4, 2, 4)

D =


v0 v1 v2 v3 v4 v5 v6 v7

c0 1 0 1 0 1 0 1 0
c1 0 1 0 1 1 0 1 0
c2 0 1 1 0 0 1 0 1
c3 1 0 0 1 0 1 0 1


Cycles in the World of Matrices
A 4-cycle in a Tanner graph is equivalent to a 2× 2 all-one submatrix in the
incidence matrix of the design (or the parity-check matrix of the
corresponding LDPC code)
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Regular Graph Designs

Concurrence Matrix of a Design
• The concurrence λij of points i and j is r if i = j and otherwise is the
number of blocks in which i and j both occur

• The matrix Λ = DDT is called the concurrence matrix of the design
• Remark: λij = cij (number of overlaps of rows i and j in the
corresponding parity-check matrix H)

Regular Graph Design (RGD)
An RGD is an IBD(v , k, r) where any two points belong to either λ or λ+ 1
common blocks, for some constant λ and is denoted as RGDλ(v , k, r)
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Example of an IBD with 4-cycles (Cont.)

Cycles and Concurrences
Having 4-cycles in the Tanner graph of an LDPC code imply that the
corresponding IBD has a concurrence equal to 2

The Concurrence Matrix Λ of an IBD(4, 2, 4)

Λ = DDT =


points 0 1 2 3

0 4 2 1 1
1 2 4 1 1
2 1 1 4 2
3 1 1 2 4


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Minimal Variance obtained from RGDs

RGDs and Tanner Graphs
An RGD with λ = 0 has the property that any two points occur in at most
one block, which implies that the corresponding Tanner graph of the code is
thus without 4-cycles

Minimal Variance of Syndrome Weight obtained from RGDs
Any code with minimal variance V [w ] (that has gk = 0 for 2 ≤ k ≤ d − 1)
must be free of 4-cycles and is equivalent to an RGD with λ = 0!
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Comparison of Theory with Simulation
• m = 500, n = 1000, d = 6, dv = 3
• green: simulated bin heights, red: bin heights for
N (E [w ] ,V [w ]i.i.d.)

• blue: bin heights for N (E [w ] ,V [w ]) (where N (µ, σ2) is the normal
distribution)
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Figure : Simulation for RGD0(500, 3, 6) = regular LDPC code w/o 4-cycles (and w/o 6-cycles)
(left) vs Simulation for IBD(500, 3, 6) = regular LDPC code with 1000 4-cycles (right)
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Comparison of Theory with Simulation
• m = 500, n = 1000, d = 6, dv = 3
• green: simulated bin heights, red: bin heights for
N (E [w ] ,V [w ]i.i.d.)

• blue: bin heights for N (E [w ] ,V [w ]) (where N (µ, σ2) is the normal
distribution)
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Figure : Simulation for RGD0(500, 3, 6) = regular LDPC code w/o 4-cycles (and w/o 6-cycles)
(left) vs Simulation for IBD(500, 3, 6) = regular LDPC code with 1000 4-cycles (right)

16/20



Research Problems

Related to Designs
Are there any other classes of designs suitable for CSI estimation?

Related to Codes
Relaxing regularity conditions for LDPC codes can lead to better estimators
(obtained from designs)?
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Summary

Highlights
1. We showed how combinatorial designs can be used for channel estimation
2. We demonstrated that regular graph designs correspond to codes with

minimal variance for estimating the syndrome weight

Future Work
Solve (some) of the research problems..!
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Questions - Comments

Thanks for your Attention!

dsimos@sba-research.org

20/20


	Channel Estimation
	LDPC Codes
	Motivation/Previous Work
	Exact Mean and Variance of Syndrome Weight

	Connections with Combinatorial Designs
	Regularity Conditions for Tanner Graphs
	Resolvable Graph Designs
	Comparison of Theory with Simulation

	Research Problems

