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Rank metric codes

A rank metric code is a set C ⊂ Mn(F) of n × n matrices over a
field F with the distance function

d(X ,Y ) := rank(X − Y ).

I Mostly we will be concerned with F = Fq.
I A code is Fq0-linear if it is a subspace over Fq0 ≤ Fq.
I Goals:

I Illustrate the link with semifields.
I Construct a new family of linear MRD-codes for all

parameters.
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Rank metric codes

Introduced and constructed by Delsarte (1978), who studied
them via association schemes.

Gabidulin (1985) provided more constructions and decoding
algorithms.

Have seen renewed interest in recent years, in part due to their
connections to subspace codes and q-designs.



Rank metric codes

Introduced and constructed by Delsarte (1978), who studied
them via association schemes.

Gabidulin (1985) provided more constructions and decoding
algorithms.

Have seen renewed interest in recent years, in part due to their
connections to subspace codes and q-designs.



Rank metric codes

Introduced and constructed by Delsarte (1978), who studied
them via association schemes.

Gabidulin (1985) provided more constructions and decoding
algorithms.

Have seen renewed interest in recent years, in part due to their
connections to subspace codes and q-designs.



Equivalence of rank metric codes

Two codes C1 and C2 are said to be equivalent if there exist
invertible matrices A,B, a matrix D, and an automorphism ρ of
F such that

C2 = {AX ρB + D : X ∈ C1}

or
C2 = {A(X T )ρB + D : X ∈ C1}

Clearly operations of this form preserve rank distance.

Can be viewed as codes in (Fqn)n.

Note: two notions of equivalence... one restricts A to a certain
subgroup of GL(n,F).
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Easy upper bound (Singleton-like)

Suppose C ⊂ Mn(Fq) is a rank metric code with minimum
distance d . Then |C| ≤ qn(n−d+1).

Over any field, a linear rank metric code with minimum distance
d can have dimension at most n(n − d + 1).
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MRD codes

A code meeting this bound is said to be a Maximum Rank
Distance (MRD) code.

If C is an MRD-code which is linear over Fq with dimension nk
and minimum distance n − k + 1, we say it has parameters
[n2,nk ,n − k + 1]q.

Duality: C⊥ the orthogonal space with respect to e.g.
b(X ,Y ) := tr(Tr(XY T )).

Delsarte: C MRD⇔ C⊥ MRD; parameters [n2,n(n− k), k + 1]q.

Delsarte, and later Gabidulin, constructed examples for all
parameters using linearized polynomials.
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Linearized polynomials

A linearized polynomial is a polynomial in Fqn [x ] of the form

f (x) = f0x + f1xq + · · ·+ fn−1xqn−1
.

Each such polynomial is an Fq-linear map from Fqn to itself.

In fact, every Fq-linear map on Fqn can be uniquely realised as
a linearized polynomial of degree at most qn−1 (q-degree at
most n − 1).

Linearized polynomials ⇔ Mn(Fq)

Composition mod xqn − x ⇔ Matrix multiplication
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Gabidulin codes (1985)

The Delsarte/Gabidulin code Gk is a the set of linearized
polynomials of q-degree at most k − 1, i.e.

Gk := {f0x + f1xq + · · ·+ fk−1xqk−1
: fi ∈ Fqn}.

Clearly each element of Gk has at most qk−1 roots, and hence
rank at least n − k + 1.

Gk has dimension nk over Fq. (In fact, it is linear over Fqn ).

Hence Gk is a linear MRD-code with parameters
[n2,nk ,n − k + 1]q.

Can replace q with qm for any m with (n,m) = 1, and define
Gk ,m (Gabidulin).
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Other known examples

The first non-trivial example of a non-linear MRD-code was
recently given by Cossidente, Marino and Pavese for the case
n = 3, d = 2 (presented at Irsee 2014).

No others were known (up to equivalence)... except in the case
k ∈ {1,n − 1} (d ∈ {n,2})... semifields.

Wassermann (also at Irsee 2014) asked for more examples for
1 < k < n − 1.
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(Pre)semifields

A (pre)semifield is a division algebra in which multiplication is
not necessarily associative (or commutative).

First non-trivial examples were constructed by Dickson (1906).

They correspond to a particular class of projective planes.

If S is n-dimensional over Fq, we identify the elements of S with
Fqn . We write the product of two elements x and y by S(x , y).

Every algebra multiplication can be written as

S(x , y) =
∑
i,j

cijxqi
yqj
.

for some ci,j ∈ Fqn .

Isotopic if S′(x , y)A = S(xB, yC).
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Semifields and rank metric codes

Denote by Ry the endomorphism of right multiplication by y , i.e.
Ry (x) = S(x , y).

Let C(S) be the set of all such endomorphisms: semifield
spread set.

Then every nonzero element of C(S) is invertible, i.e. is an
Fq-linear [n2,n,n]q MRD-code (k=1).

Conversely, every linear [n2,n,n]q MRD-code defines a
presemifield of order qn.

This connection is well-known, but often forgotten.
[Bruck-Bose, Dembowski]

The Gabidulin code G1 corresponds to the field Fqn .
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Semifields and rank metric codes

Two semifields are isotopic if S′(x , y)A = S(xB, yC) for invertible
A,B,C.

[Maduram]: S and S′ are isotopic if and only if there exist
invertible A,B such that

C(S′) = {A−1X ρB | X ∈ C(S)}.

The Knuth orbit of a semifield is the set of (up to) six semifields
obtained via the two operations transpose and dual:

C(St) := {X T | X ∈ C(S)}.

C(Sd) := {Lx : y 7→ S(x , y) | x ∈ S}.

Code equivalence↔ isotopy + transpose.
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Semifields and rank metric codes

Nonlinear MRD-codes with minimum distance n↔ Quasifields

Fq0-linear MRD-code in Mn(Fq), d = n↔ semifields with a
nucleus containing Fq.

Subspace code from a quasifield/semifield = Spread/semifield
spread.

Equivalent∗ codes↔ Isotopic presemifields↔ isomorphic
planes↔ equivalent spreads.

Commutative/symplectic semifields ! MRD-code consisting of
symmetrics [Kantor].
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Examples

Albert (1965) defined a multiplication on Fqn by

S(x , y) = xy − cxqi
yqj
,

N(c) 6= 1, named Generalized twisted fields.

MRD code of linearized polynomials: {xy − cxqi
yqj

: y ∈ Fqn}

A lot of other constructions.

Even more examples found by computer (e.g. 332 isotopy
classes of order 26 [Rua-Combarro-Ranilla]; only 35 were from
known constructions).

So, plenty of non-Gabidulin MRD-codes for k = 1 (and
k = n − 1 by duality).
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Semifields: classification results

Dickson: Every semifield two-dimensional over its centre is
isotopic to either a field. Hence there is a unique Fq-linear
[22,2,2]q MRD code.

Menichetti (1977): Every semifield three-dimensional over its
centre is isotopic to either a field or generalised twisted field.

Hence Fq-linear [32,3,3]q MRD codes are completely
classified.

By duality, Fq-linear [32,6,2]q MRD codes are also completely
classified, and so all Fq-linear MRD codes in M3(Fq).

Menichetti also classified Fq-linear [n2,n,n]q codes over Fq for
n prime and q large enough.
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Semifields: classification results

A lot of recent work in semifields has been focussed on rank
two semifields, which correspond to Fq0-linear MRD codes in
M2(Fq).

Full classification for q = q2
0 (Cardinali-Polverino-Trombetti),

partial classification for q = q3
0

(Johnson-Lavrauw-Marino-Polverino-Trombetti...).

Full classification for Fq0-linear symmetric MRD-codes in
M2(Fq), q = qm

0 , q0 large enough w.r.t m.
[Ball-Blokhuis-Lavrauw].

Useful references: Kantor(2006); Lavrauw-Polverino (2011).
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Enough about semifields already... what about 1 < k < n − 1?



Minimum polynomial of a subspace

Suppose U is an Fq-subspace of Fqn of dimension k . Then
there exists a unique monic linearized polynomial of degree qk

annihilating U.

Hence a linearized polynomial of degree qk has rank n − k if
and only if it is an Fqn -multiple of the minimum polynomial of
some subspace of dimension k .

U = 〈α〉Fq :
αxq − αqx

So a degree 1 linearized polynomial has rank n− 1 if and only if
N(f1) = N(−f0).
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Minimum polynomial of a subspace

U = 〈α, β〉Fq :

(αβq − αqβ)xq2
+ (αq2

β − αβq2
)xq + (αqβq2 − αq2

βq)x

So a degree 2 linearized polynomial has rank n − 2 only if
N(f2) = N(f0).



Key Lemma

Lemma
Suppose f is a linearized polynomial of degree qk . If f has rank
n − k, then N(fk ) = (−1)nkN(f0).
(Proof is a simple induction argument, using the minimum
polynomial of a subspace).

Hence if we can choose a subspace of linearized polynomials
of degree at most qk , avoiding N(fk ) = (−1)nkN(f0), then each
element would have rank at least n − k + 1.
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New construction

Define Hk (a,h) to be the set of linearized polynomials of
degree at most k satisfying fk = af qh

0 , with N(a) 6= (−1)nk .

Hk (a,h) := {f0x + f1xq + · · ·+ fk−1xqk−1
+ af qh

0 xqk
: fi ∈ Fqn}.

Theorem (S.)
Hk (a,h) is an MRD-code with parameters [n,nk ,n − k + 1]q.
Furthermore, Hk (a,h) is not equivalent to Gk unless
k ∈ {1,n − 1} and h ∈ {0,1}.
Choosing a = 0 returns the Gabidulin codes.



New construction

Define Hk (a,h) to be the set of linearized polynomials of
degree at most k satisfying fk = af qh

0 , with N(a) 6= (−1)nk .

Hk (a,h) := {f0x + f1xq + · · ·+ fk−1xqk−1
+ af qh

0 xqk
: fi ∈ Fqn}.

Theorem (S.)
Hk (a,h) is an MRD-code with parameters [n,nk ,n − k + 1]q.
Furthermore, Hk (a,h) is not equivalent to Gk unless
k ∈ {1,n − 1} and h ∈ {0,1}.
Choosing a = 0 returns the Gabidulin codes.



New construction

Define Hk (a,h) to be the set of linearized polynomials of
degree at most k satisfying fk = af qh

0 , with N(a) 6= (−1)nk .

Hk (a,h) := {f0x + f1xq + · · ·+ fk−1xqk−1
+ af qh

0 xqk
: fi ∈ Fqn}.

Theorem (S.)
Hk (a,h) is an MRD-code with parameters [n,nk ,n − k + 1]q.
Furthermore, Hk (a,h) is not equivalent to Gk unless
k ∈ {1,n − 1} and h ∈ {0,1}.
Choosing a = 0 returns the Gabidulin codes.



Idea of (a) proof of inequivalence

I Hk contains a space equivalent to Gk−1, and is contained
in Gk+1.

I Lemma: Every subspace of Gs equivalent to Gr is of the
form

gGr h,

where g,h are invertible and degq(g) + degq(h) ≤ s − r .
I Result follows quickly from this.
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Twisted Gabidulin codes

When k = 1, H1(a,h) corresponds to the spread set of a
generalized twisted field.

f0x + af qh

0 xq = S(x , f0).

Hence we propose to call these twisted Gabidulin codes.

Note that these codes are Fqn -linear if and only if h = 0,.
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More examples?

These codes can be seen as part of a family of codes in
one-to-one correspondence with maximum subspaces disjoint
from a hyperregulus in V (2n,q).

These were considered in Lavrauw-S.-Zanella (2014). Known
examples give the H’s.

New examples would not only give new codes, but also new
semifields. Hence classifying such subspaces is an intriguing
open problem.
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Infinite fields

MRD codes over infinite fields have applications in space-time
coding.

Let F be any field, and K a cyclic Galois extension of degree n.
Let σ be a generator for Gal(K : F ).

Then we can replace linearized polynomials with maps of the
form

f : x 7→
n−1∑
i=0

fixσ
i

Then the analogues of Gk and Hk are also MRD-codes.

Gk : Gow-Quinlan (2009), Augot-Loidreau-Robert (201?).
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Thank you for your attention!


