Self-dual codes from extended orbit matrices of symmetric designs

Sanja Rukavina (sanjar@math.uniri.hr) (joint work with D. Crnković)

Department of Mathematics University of Rijeka Croatia

ALCOMA 15, Kloster Banz; Germany

- Introduction
 - Orbit matrices of symmetric designs
 - Codes

2 Codes from orbit matrices of symmetric designs

3 Self-dual codes from extended orbit matrices

Symmetric designs

A $t - (v, k, \lambda)$ design is a finite incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ satisfying the following requirements:

- $oldsymbol{\circ}$ every element of $\mathcal B$ is incident with exactly k elements of $\mathcal P$,
- **3** every t elements of \mathcal{P} are incident with exactly λ elements of \mathcal{B} .

Every element of \mathcal{P} is incident with exactly r elements of \mathcal{B} . The number of blocks is denoted by b.

If $|\mathcal{P}| = |\mathcal{B}|$ (or equivalently k = r) then the design is called **symmetric**.

The **incidence matrix** of a design is a $b \times v$ matrix $[m_{ij}]$ where b and v are the numbers of blocks and points respectively, such that $m_{ij} = 1$ if the point P_j and the block x_i are incident, and $m_{ij} = 0$ otherwise.

Tactical decomposition

Let A be the incidence matrix of a design $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$. A **decomposition** of A is any partition B_1, \ldots, B_s of the rows of A (blocks of \mathcal{D}) and a partition P_1, \ldots, P_t of the columns of A (points of \mathcal{D}).

For $i \le s$, $j \le t$ define

$$\alpha_{ij} = |\{P \in P_j | P\mathcal{I}x\}|, \text{ for } x \in B_i \text{ arbitrarily chosen,}$$

 $\beta_{ij} = |\{x \in B_i | P\mathcal{I}x\}|, \text{ for } P \in P_j \text{ arbitrarily chosen.}$

We say that a decomposition is **tactical** if the α_{ij} and β_{ij} are well defined (independent from the choice of $x \in B_i$ and $P \in P_j$, respectively).

Automorphism group

An isomorphism from one design to other is a bijective mapping of points to points and blocks to blocks which preserves incidence. An isomorphism from a design $\mathcal D$ onto itself is called an **automorphism of** $\mathcal D$. The set of all automorphisms of $\mathcal D$ forms a group called the full automorphism group of $\mathcal D$ and is denoted by $Aut(\mathcal D)$.

Let $\mathcal{D}=(\mathcal{P},\mathcal{B},\mathcal{I})$ be a symmetric (v,k,λ) design and $G\leq Aut(\mathcal{D})$. The group action of G produces the same number of point and block orbits. We denote that number by t, the G-orbits of points by $\mathcal{P}_1,\ldots,\mathcal{P}_t$, G-orbits of blocks by $\mathcal{B}_1,\ldots,\mathcal{B}_t$, and put $|\mathcal{P}_r|=\omega_r$, $|\mathcal{B}_i|=\Omega_i$, $1\leq i,r\leq t$.

The group action of G induces a tactical decomposition of the incidence matrix of \mathcal{D} . Denote by γ_{ij} the number of points of \mathcal{P}_j incident with a representative of the block orbit \mathcal{B}_i . For these numbers the following equalities hold:

$$\sum_{j=1}^{t} \gamma_{ij} = k, \qquad (1)$$

$$\sum_{i=1}^{t} \frac{\Omega_{i}}{\omega_{j}} \gamma_{ij} \gamma_{is} = \lambda \omega_{s} + \delta_{js} \cdot n, \qquad (2)$$

where $n = k - \lambda$ is the order of the design \mathcal{D} .

Orbit matrix

Definition 1

A $(t \times t)$ -matrix $M = (\gamma_{ij})$ with entries satisfying conditions (1) and (2) is called an **orbit matrix** for the parameters (v, k, λ) and orbit lengths distributions $(\omega_1, \ldots, \omega_t)$, $(\Omega_1, \ldots, \Omega_t)$.

Orbit matrices are often used in construction of designs with a presumed automorphism group. Construction of designs admitting an action of the presumed automorphism group consists of two steps:

- Construction of orbit matrices for the given automorphism group,
- 2 Construction of block designs for the obtained orbit matrices.

Codes

Let \mathbf{F}_q be the finite field of order q. A **linear code** of **length** n is a subspace of the vector space \mathbf{F}_q^n . A k-dimensional subspace of \mathbf{F}_q^n is called a linear [n,k] code over \mathbf{F}_q .

For $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbf{F}_q^n$ the number $d(x, y) = |\{i \mid 1 \le i \le n, x_i \ne y_i\}|$ is called a Hamming distance. A **minimum distance** of a code C is $d = min\{d(x, y) \mid x, y \in C, x \ne y\}$. A linear [n, k, d] code is a linear [n, k] code with minimum distance d.

The **dual** code C^{\perp} is the orthogonal complement under the standard inner product (,). A code C is **self-orthogonal** if $C \subseteq C^{\perp}$ and **self-dual** if $C = C^{\perp}$.

Codes from orbit matrices of symmetric designs

Theorem 1 [M. Harada, V. D. Tonchev, 2003]

Let \mathcal{D} be a 2- (v,k,λ) design with a **fixed-point-free** and **fixed-block-free** automorphism ϕ of order q, where q is prime. Further, let M be the orbit matrix induced by the action of the group $G = \langle \phi \rangle$ on the design \mathcal{D} . If p is a prime dividing r and λ then the **orbit matrix** M generates a **self-orthogonal code** of length b|q over \mathbf{F}_p .

Let a group G acts on a symmetric (v, k, λ) design with $t = \frac{v}{\Omega}$ orbits of length Ω on the set of points and set of blocks.

Theorem 1a

Let $\mathcal D$ be a symmetric (v,k,λ) design admitting an automorphism group G that acts on the sets of points and blocks with $t=\frac{v}{\Omega}$ orbits of length Ω . Further, let M be the orbit matrix induced by the action of the group G on the design $\mathcal D$. If p is a prime dividing k and k, then the rows of the matrix k span a self-orthogonal code of length k over k.

Self-dual codes from extended orbit matrices

In the sequel we will study codes spanned by orbit matrices for a symmetric (v, k, λ) design and orbit lengths distribution (Ω, \dots, Ω) , where $\Omega = \frac{v}{t}$. We follow the ideas presented in:

- E. Lander, Symmetric designs: an algebraic approach, Cambridge University Press, Cambridge (1983).
- R. M. Wilson, Codes and modules associated with designs and *t*-uniform hypergraphs, in: D. Crnković, V. Tonchev, (eds.) Information security, coding theory and related combinatorics, pp. 404–436. NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur. 29 IOS, Amsterdam (2011).

(Lander and Wilson have considered codes from incidence matrices of symmetric designs.)

Theorem 2

Let p be a prime. Suppose that C is the code over \mathbf{F}_p spanned by the incidence matrix of a symmetric (v, k, λ) design.

- **1** If $p \mid (k \lambda)$, then $dim(C) \leq \frac{1}{2}(v + 1)$.
- ② If $p \nmid (k \lambda)$ and $p \mid k$, then dim(C) = v 1.
- 3 If $p \nmid (k \lambda)$ and $p \nmid k$, then dim(C) = v.

Theorem 3 [D. Crnković, SR]

Let a group G acts on a symmetric (v, k, λ) design \mathcal{D} with $t = \frac{v}{\Omega}$ orbits of length Ω , on the set of points and the set of blocks, and let M be an orbit matrix of \mathcal{D} induced by the action of G. Let p be a prime. Suppose that C is the code over \mathbf{F}_p spanned by the rows of M.

- **1** If $p \mid (k \lambda)$, then $dim(C) \leq \frac{1}{2}(t + 1)$.
- ② If $p \nmid (k \lambda)$ and $p \mid k$, then dim(C) = t 1.
- **3** If $p \nmid (k \lambda)$ and $p \nmid k$, then dim(C) = t.

Let a group G acts on a symmetric (v, k, λ) design with $t = \frac{v}{\Omega}$ orbits of length Ω on the set of points and set of blocks.

Theorem 1a

Let $\mathcal D$ be a symmetric (v,k,λ) design admitting an automorphism group G that acts on the sets of points and blocks with $t=\frac{v}{\Omega}$ orbits of length Ω . Further, let M be the orbit matrix induced by the action of the group G on the design $\mathcal D$. If p is a prime dividing k and k, then the rows of the matrix k span a self-orthogonal code of length k over k.

Let V be a vector space of finite dimension n over a field \mathbf{F} , let $b: V \times V \to \mathbf{F}$ be a symmetric bilinear form, i.e. a scalar product, and (e_1, \ldots, e_n) be a basis of V. The bilinear form b gives rise to a matrix $B = [b_{ii}]$, with

$$b_{ij}=b(e_i,e_j).$$

The matrix B determines b completely. If we represent vectors x and y by the row vectors $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$, then

$$b(x, y) = xBy^T$$
.

Since the bilinear form b is symmetric, B is a symmetric matrix.

A bilinear form b is nondegenerate if and only if its matrix B is nonsingular.

We may use a symmetric nonsingular matrix U over a field \mathbf{F}_p to introduce a scalar product $\langle \cdot, \cdot \rangle_U$ for row vectors in \mathbf{F}_p^n , namely

$$\langle a,c\rangle_U=aUc^\top.$$

For a linear p-ary code $C \subset F_p^n$, the U-dual code of C is

$$C^U = \{ a \in \mathbf{F}_p^n : \langle a, c \rangle_U = 0 \text{ for all } c \in C \}.$$

We call C self-U-dual, or self-dual with respect to U, when $C = C^U$.

Let a group G acts on a symmetric (v, k, λ) design \mathcal{D} with $t = \frac{v}{\Omega}$ orbits of length Ω , on the set of points and the set of blocks, and let M be the corresponding orbit matrix.

If p divides $k - \lambda$, but does not divide k, we use a different code. Define the extended orbit matrix

$$M^{ ext{ext}} = \left[egin{array}{cccc} M & egin{array}{cccc} 1 \ \lambda\Omega & \cdots & \lambda\Omega & k \end{array}
ight],$$

and denote by C^{ext} the extended code spanned by M^{ext} .

Define the symmetric bilinear form ψ by

$$\psi(\bar{x},\bar{y})=x_1y_1+\ldots+x_ty_t-\lambda\Omega x_{t+1}y_{t+1},$$

for $\bar{x}=(x_1,\ldots,x_{t+1})$ and $\bar{y}=(y_1,\ldots,y_{t+1})$. Since $p\mid n$ and $p\nmid k$, it follows that $p\nmid \Omega$ and $p\nmid \lambda$. Hence ψ is a nondegenerate form on \mathbf{F}_p . The extended code C^{ext} over \mathbf{F}_p is self-orthogonal (or totally isotropic) with respect to ψ .

The matrix of the bilinear form ψ is the $(t+1) \times (t+1)$ matrix

$$\Psi = \left[egin{array}{cccccc} 1 & 0 & \cdots & 0 & 0 \ 0 & 1 & \cdots & 0 & 0 \ dots & dots & \ddots & dots & dots \ 0 & 0 & \cdots & 1 & 0 \ 0 & 0 & \cdots & 0 & -\lambda \Omega \end{array}
ight].$$

Theorem 4 [D. Crnković, SR]

Let \mathcal{D} be a symmetric (v,k,λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t=\frac{v}{\Omega}$ orbits of length Ω . Further, let M be the orbit matrix induced by the action of the group G on the design \mathcal{D} , and C^{ext} be the corresponding extended code over F_p . If a prime p divides $(k-\lambda)$, but $p^2 \nmid (k-\lambda)$ and $p \nmid k$, then C^{ext} is **self-dual with respect to** ψ .

Theorem 5

If there exists a self-dual p-ary code of length n with respect to a nondegenerate scalar product ψ , where p is an odd prime, then $(-1)^{\frac{n}{2}}det(\psi)$ is a square in \mathbf{F}_p .

A direct consequence of Theorems 4 and 5 is the following theorem.

Theorem 6

Let \mathcal{D} be a symmetric (v,k,λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t=\frac{v}{\Omega}$ orbits of length Ω . If an odd prime p divides $(k-\lambda)$, but $p^2 \nmid (k-\lambda)$ and $p \nmid k$, then $-\lambda \Omega(-1)^{\frac{t+1}{2}}$ is a square in \mathbf{F}_p .

If $p^2 \mid (k - \lambda)$ we use a chain of codes to obtain a self-dual code from an orbit matrix.

Given an $m \times n$ integer matrix A, denote by $row_{\mathbf{F}}(A)$ the linear code over the field \mathbf{F} spanned by the rows of A. By $row_p(A)$ we denote the p-ary linear code spanned by the rows of A.

For a given matrix A, we define, for any prime p and nonnegative integer i,

$$\mathcal{M}_i(A) = \{x \in \mathbb{Z}^n : p^i x \in row_{\mathbb{Z}}(A)\}.$$

We have $\mathcal{M}_0(A) = row_{\mathbb{Z}}(A)$ and

$$\mathcal{M}_0(A) \subseteq \mathcal{M}_1(A) \subseteq \mathcal{M}_2(A) \subseteq \dots$$

Let

$$C_i(A) = \pi_p(\mathcal{M}_i(A))$$

where π_p is the homomorphism (projection) from \mathbb{Z}^n onto \mathbf{F}_p^n given by reading all coordinates modulo p. Then each $C_i(A)$ is a p-ary linear code of length n, $C_0(A) = row_p(A)$, and

$$C_0(A) \subseteq C_1(A) \subseteq C_2(A) \subseteq \ldots$$

Theorem 7

Suppose A is an $n \times n$ integer matrix such that $AUA^T = p^eV$ for some integer e, where U and V are square matrices with determinants relatively prime to p. Then $C_e(A) = \mathbf{F}_p^n$ and

$$C_j(A)^U = C_{e-j-1}(A), \text{ for } j = 0, 1, \dots, e-1.$$

In particular, if e = 2f + 1, then $C_f(A)$ is a self-U-dual p-ary code of length n.

In the next theorem the above result is used to associate a self-dual code to an orbit matrix of a symmetric design.

Theorem 8 [D. Crnković, SR]

Let $\mathcal D$ be a symmetric (v,k,λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t=\frac{v}{\Omega}$ orbits of length Ω . Suppose that $n=k-\lambda$ is exactly divisible by an odd power of a prime p and λ is exactly divisible by an even power of p, e.g. $n=p^e n_0$, $\lambda=p^{2a}\lambda_0$ where e is odd, $a\geq 0$, and $(n_0,p)=(\lambda_0,p)=1$. If $p\nmid \Omega$, then there exists a self-dual p-ary code of length t+1 with respect to the scalar product corresponding to $U=diag(1,\ldots,1,-\lambda_0\Omega)$.

If λ is exactly divisible by an odd power of p, we apply the above case to the complement of the given symmetric design, which is a symmetric (v, k', λ') design, where k' = v - k and $\lambda' = v - 2k + \lambda$.

Theorem 9

Let \mathcal{D} be a symmetric (v,k,λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t=\frac{v}{\Omega}$ orbits of length Ω . Suppose that $n=k-\lambda$ is exactly divisible by an odd power of a prime p and λ is also exactly divisible by an odd power of p, e.g. $n=p^en_0,\ \lambda=p^{2a+1}\lambda_0$ where e is odd, $a\geq 0$, and $(n_0,p)=(\lambda_0,p)=1$. If $p\nmid \Omega$, then there exists a self-dual p-ary code of length t+1 with respect to the scalar product corresponding to $U=diag(1,\ldots,1,\lambda_0n_0\Omega)$.

As a consequence of Theorems 5, 8 and 9, we have

Theorem 10

Let \mathcal{D} be a symmetric (v,k,λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t=\frac{v}{\Omega}$ orbits of length Ω . Suppose that p is an odd prime such that $n=p^e n_0$ and $\lambda=p^b\lambda_0$, where $(n_0,p)=(\lambda_0,p)=1$, and $p\nmid\Omega$. Then

- $-(-1)^{(t+1)/2}\lambda_0\Omega$ is a square (mod p) if b is even,
- $(-1)^{(t+1)/2} n_0 \lambda_0 \Omega$ is a square (mod p) if b is odd.