
Motivation Background

On a 14-dimensional self-orthogonal code
invariant under the simple group G2(3)

Bernardo Rodrigues

School of Mathematics, Statistics and Computer Science
University of KwaZulu-Natal

Durban, South Africa

ALCOMA15
Kloster Banz, March 2015



Motivation Background

Motivation

(Rob Wilson, 2012) examined an interplay that exists
between the 14-dimensional real representation of the
finite simple group G2(3) and the smallest Ree group in
characteristic 3.
Using the pairs of 378 norm 2 vectors (Wilson) showed
how the compact real form of a simple Lie algebra gives
rise to an interesting lattice with automorphism group
whose order is larger than one would expect.
Using the approach taken by Wilson we consider either
sets of norm 2 vectors and construct a permutation module
of dimension 378 over GF (2) and view this 14-dimensional
lattice is an faithful and irreducible submodule.
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Motivation

We show that this code is self-orthogonal and doubly-even
with automorphism group isomorphic to the simple group
G2(3).
We give a geometric description of the nature all classes of
non-zero weight codewords.
We describe the structure of the stabilizers of the non-zero
weight codewords in the code, and determine all transitive
designs invariant under G2(3) of degree 378 and attempt
to establish some connections with the results given in
(Wilson, 2012).
This talk is on codes defined as submodules of
permutation modules.
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Representations and modules

Definition
Let G be a finite group and let V be a vector space of
dimension n over the field F. Then a homomorphism
ρ : G −→ GL(n,F) is said to be a matrix representation of G of
degree n over the field F, where GL(n,F) is the group of
invertible n × n matrices with entries from F. We call the
column space, Fn×1 of ρ the representation module of ρ. If the
characteristic of F is zero then ρ is called an ordinary
representation while a representation over a field of non-zero
characteristic is called a modular representation.
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Remark
A representation ρ : G −→ GL(n,F) is said to be injective
if the kernel Ker(ρ) = {1G}.
Representations are generally not injective but a
representation which is injective is called faithful
representation in which case we have G ∼= Im(ρ) so that G
is isomorphic to a subgroup of GL(n,F).
Every group has a degree 1 matrix representation
ρ̂ : G −→ GL(1,F) = F∗ defined by ρ(g) = 1F for all g ∈ G.
This representation is called the trivial representation.
Recall from linear algebra that GL(V ) ∼= GL(n,F) given a
finite dimensional F-vector space V .
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If we let B = {v1, . . . , vn} be a basis for V then given any
g ∈ G and a representation ρ : G −→ GL(V ), ρ(g) ∈ GL(V )
then we obtain that the corresponding matrix
representation ρ(g) ∈ GL(n,F) with respect to the basis B
is given by ρ(g) = [aij ] where

ρ(g)(vj) =
n∑

i=1

aijvi .

Similarly, if we are given an invertible matrix representation
ρ : G −→ GL(n,F) then for ρ(g) ∈ GL(n,F) it follows that
we can define a representation % : G −→ GL(V ) by
%(g)(v) = ρ(g)v where v ∈ Fn×1 is a column vector in the
column space of ρ(g) with respect to the standard basis.
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Theorem
If F is a field and G a finite group, then there is a bijective
correspondence between finitely generated FG-modules and
representations of G on finite-dimensional F-vector spaces.

Representation theory can be formulated in the more
general context of algebras instead of groups.
In this situation a ring homomorphism ρ :FG −→ EndF(V ),
where FG is the group ring of G over F, restricts to a
representation of G.
In such context V can be viewed as both a vector space
over F and a FG-module through the ring homomorphism
ρ.
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Definition
Let G be a finite group and F be a field. The group ring of G
over F is the set of all formal sums of the form∑

g∈G

λgg, λg ∈ F

with componentwise addition and multiplication
(λg)(µh) = (λµ)(gh) (where λ and µ are multiplied in F and gh
is the product in G) extended to sums by means of the
distributive law.

It is a straightforward to verify that the group ring FG is a
vector space over F; and thus we can form FG-modules.
We now depict the interplay between representations of G
and FG-modules.
In particular, our interest will be in the correspondence
between FG-modules and G-invariant subspaces.
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Definition

Let ρ : G −→ GL(n,F) be a representation of G on a vector
space V = Fn. Let W ⊆ V be a subspace of V of dimension m
such that ρg(W ) ⊆W for all g ∈ G, then the map
G→ GL(m,F) given by g 7−→ ρ(g)|W is a representation of G
called a subrepresentation of ρ. The subspace W is then said
to be G-invariant or a G-subspace. Every representation has
{0} and V as G-invariant subspaces. These two subspaces are
called trivial or improper subspaces.

Definition

A representation ρ : G −→ GL(n,F) of G with representation
module V is called reducible if there exists a proper non-zero
G-subspace U of V and it is said to be irreducible if the only
G-subspaces of V are the trivial ones.
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Remark
The representation module V of an irreducible representation is
called simple and the ρ invariant subspaces of a representation
module V are called submodulesof V .

Definition

Let V be an FG-module. V is said to be decomposable if it can
be written as a direct sum of two FG-submodules, i.e., there
exist submodules U and W of V such that V = U ⊕W. If no
such submodules for V exist, V is called indecomposable. If V
can be written as a direct sum of irreducible submodules, then
V is called completely reducible or semisimple.
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Remark
A completely reducible module, implies a decomposable
module, which implies a reducible one, but the converse is not
true in general.
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FG-modules and G-invariant codes

We will present a development of coding theory based on the
correspondence between representations of G and
FG-modules.

Definition
Let F be a finite field of q elements where q is a power of a
prime p, and G be a finite group acting primitively on a finite set
Ω. Let V = FΩ be the vector space over F, of all linear
combinations of

∑
λix , λi ∈ F, x ∈ Ω i.e, the vector space with

basis the elements of Ω. To define an FG-module on V it
suffices to stipulate the action of the elements of G on the basis
elements of V . So we consider the group action
ρ : G −→ GL(V ) defined by ρ(g) 7→ ρ(g)(x), g ∈ G, x ∈ V .
Extending linearly the induced G-action on V makes V into an
FG-module called an FΩ-permutation module over FG.
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A method of finding G-invariant codes

Lemma
Let G be a finite group and Ω a finite G-set. Then the
FG-submodules of FΩ are precisely the G-invariant codes (i.e.,
G-invariant subspaces of FΩ).

The previous Lemma implicitly gives us the strategy of finding
all codes with a group G acting as an automorphism group.
We explicitly outline the steps. Given a permutation group G
acting on a finite set Ω, and ρ : G −→ GL(V ) where
ρ(π(x)) = π(x) with π ∈ G and x ∈ V . The steps are as follows:

1 . Recognize FpΩ as a permutation module;
2. Find all the submodules of FpΩ;
3. By the earlier Lemma the submodules are the G-invariant

codes;
4. Test equivalence and filter isomorphic copies;
5. Test irreducibility of the code.
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Binary codes from the group G2(3) of degree 378

Consider G to be the simple group G2(3).

Max sub Degree # length
U3(3):2 351 3 224 126
U3(3):2 351 3 224 126

(3+
1+2 × 32):2S4 364 4 243 108 12

(3+
1+2 × 32):2S4 364 4 243 108 12
L3(3):2 378 4 208 117 52
L3(3):2 378 4 208 117 52
L2(8):3 2808 9 1512 504 252(2) 84(2) 63 56
23·L3(2) 3159 11 672 448(4) 224(2) 168 64 14
L2(13) 3888 14 1092 546(2) 364(2) 182(3) 91(3) 78(2)

21+4
+ :32.2 7371 32 576(4) 288(14) 144(2) 96(4) 72(3) 64 32(2) 18

Table: Orbits of a point-stabilizer of G2(3)
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Rank-4 action of G2(3) on the pairs of norm 2
vectors

Observe from the preceding Table that there are two
classes of non-conjugate maximal subgroups of G2(3) of
index 378.
The stabilizer of a point is a maximal subgroup isomorphic
to the linear group L3(3):2.
The group G2(3) acts as a rank-4 primitive group on the
cosets of L3(3):2 with orbits of lengths 1, 52, 117, and 208
respectively.
Using either sets of 378 vectors of norm 2 we form a
permutation module FΩ of length 378.
We determine the submodule structure of the permutation
module of length 378 over GF (2)
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Remark
Recall that Ω: is a set images of 378 norm 2 vectors,
defined by the action of G2(3) on the cosets of L3(3):2
the group G2(3) has orbitals Γ0, Γ1, Γ2, Γ3 where
|Γi(x)| = 1,52,117,208 respectively.
Let A0,A1,A2,A3 be the matrices of the centralizer algebra
of (G,Ω)

Let ai denote the endomorphism of the permutation
module FΩ associated with the matrix Ai or the orbital
graph Γi .
Write Γ = Γ1 and a = a1.

The endomorphism algebra E(FΩ) = EndFG(FΩ) has
basis (a0,a1,a2,a3) with a0 = idFΩ.
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Remark

The right regular representation of E(FΩ) into F 4×4 is
defined as

x 7→ (xik ) where aix =
∑

xikak .

From (D G Higman, 67) we have that matrices Bj = ((aj)ik )
are the intersection matrices of the Graph (Ω, Γj)
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Submodules of Ω of length 378

dim 0 1 14 15 90 91 91 91 92 104 104 . . .
0 X X X X X X X X X X X . . .
1 X X X X . . .
14 X X X X
15 X
90 X X X X X X
91 X X
91 X X
91 X X
92 X

104 X
104 X

...

Table: Partial view of the upper triangular part of the incidence matrix
of the poset of submodules of F2Ω = F2

378×1
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The submodule structure of the permutation
module

There are 42 submodules of the permutation module F2Ω, and
thus 38 nontrivial 2-modular codes of length 378 invariant
under G2(3).



Motivation Background

Proposition
If F = F2 then the following hold:
(a) FΩ has precisely the following endo-submodules Mi with
dimMi = i .

M378 = FΩ, M0 = 0, M377 = Ker(a0 + a1 + a2 + a3),

M1 = Im(a0 + a1 + a2 + a3),M363 = Ker(a1), M15 = Im(a1).

The submodules given in (a) form a series
M0 < M1 < M15 < M363 < M377 < M378.
(b) For every v ∈ E(FΩ) we have Ker(v) = Im(v)⊥, so that
Mi
⊥ = M378−i for the end-submodules.

(c) M14 = {u |u ∈ M15 and wt(u) ≡ 0 (mod 4)} is an
FG-submodule of co-dimension 1 in M15.
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Proposition

Set M364 = M14
⊥. Then dim(Mi) = i for i ∈ {14,364} and

0 = M0 < M14 < M15 < M363 < M364 < M378 = FΩ

is a composition series of FΩ as an FG-module.
The dimension of the composition factors in this composition
series are 14, 1, 348, 1, 14.
(d) FΩ has exactly one FG-submodule M90 of dimension 90.
Set M288 = M90

⊥ and dim(M288) = 288. We have
M91 < M92 < M364 and also M14 < M288 < M363.
Between M90 and M92 there are exactly 3 distinct
FG-submodules M91,M91′ and M91′′ . Set
M287 = (M91)⊥,M287′ = (M91′ )

⊥ and M287′′ = (M91′′ )
⊥. Then

dim(Mi) = dim(Mi ′) = i = dim(Mi ′′ ) for i ∈ {91,287} and
M91,M91′ and M91′′ are the only FG-submodules between M90
and M92.
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Proposition
We have

0 = M0 < M90 < M91 < M92 < M286 < M287 < M288 < M378 = FΩ,

0 = M0 < M90 < M91′ < M92 < M286 < M287′ < M288 < M378 = FΩ,

0 = M0 < M90 < M91′′ < M92 < M286 < M287′′ < M288 < M378 = FΩ

is a composition series of FΩ as an FG-module.
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The codes from a representation of degree 378
under G

Theorem
Let G = G2(3) be the simple untwisted Chevalley group in
either of its rank-4 representation on Ω of degree 378. Then
every linear code C2(Mi) over the field F = GF (2) admitting G
is obtained up to isomorphism from one of the FG-submodules
of the permutation module FΩ which are given in the last
proposition.
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Proposition

(i) C2(M15) is a [378,15,144]2 decomposable code with 378
words of weight 144, and its dual C2(M15)⊥ is a
[378,363,4]2 code with 100737 words of weight 4.

(ii) 1 ∈ C2(M15).
(iii) C2(M15) is a decomposable module, i.e,

C2(M15) = K ⊕ 〈1〉 where K is a 14-dimensional
F2-module invariant under G2(3).

(iv) Aut(C2(M15)) ∼= G2(3).
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The codes from a representation of degree 378
under G

Proposition

(i) C2(M14) is a [378,14,144]2 irreducible, doubly-even code
with 378 words of weight 144, and its dual C2(M14)⊥ is a
[378,364,3]2 code with 3276 words of weight 3.

(ii) The words of minimum weight in C2(M14) form a basis for
the code.

(iii) 1 /∈ C2(M14).
(iv) C2(M14) is the unique and smallest irreducible

14-dimensional F2-module invariant under G2(3).
(v) Aut(C2(M14)) ∼= G2(3)
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sketch of a proof

Proof:
The reduction modulo 2 of the ordinary character of G2(3)
of degree 14 gives rise to a faithful 2-modular character of
G2(3), see [2, 7].
This in turn establishes the 2-rank (dimension over F2) of
C2(M14). Since the 2-rank of C2(M14) equals the
dimension of the hull (i.e., 2-rank of C2(M14) equals 2-rank
of C2(M14) ∩ C2(M14)⊥) we deduce that
C2(M14) ⊆ C2(M14)⊥ and so C2(M14) is self-orthogonal.
Observe from TABLE I below, that there are exactly 378
vectors of minimum words, and these form the generating
vectors of the code. Since the spanning words have weight
144, C2(M14) is doubly-even. In TABLE I, l represents the
weight of a codeword and Al denotes the number of
codewords in C2(M14) of weight l .
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sketch of a proof

TABLE I
The weight distribution of C2(M14)

i Ai i Ai
0 1 192 7371

144 378 196 3888

180 4368 208 378

Using the weight enumerator given above we can easily
see that C2(M14) does not contain an invariant subspace
of dimension 1.
Also [2, 7] (see also [6]) establish that G2(3) has no
irreducible modules over F2 with dimensions between 2
and 13.
Hence C2(M14) is the 14-dimensional F2 module on which
G2(3) acts irreducibly.
Furthermore, computation with Magma [1] show that
C2(M14)⊥ has minimum weight 3. �
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Thank you for your presence !!!!
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