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Motivation

Motivation

@ (Rob Wilson, 2012) examined an interplay that exists
between the 14-dimensional real representation of the
finite simple group Gz(3) and the smallest Ree group in
characteristic 3.

@ Using the pairs of 378 norm 2 vectors (Wilson) showed
how the compact real form of a simple Lie algebra gives
rise to an interesting lattice with automorphism group
whose order is larger than one would expect.

@ Using the approach taken by Wilson we consider either
sets of norm 2 vectors and construct a permutation module
of dimension 378 over GF(2) and view this 14-dimensional
lattice is an faithful and irreducible submodule. q
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Motivation

Motivation

@ We show that this code is self-orthogonal and doubly-even
with automorphism group isomorphic to the simple group
G>(3).

@ We give a geometric description of the nature all classes of
non-zero weight codewords.

@ We describe the structure of the stabilizers of the non-zero
weight codewords in the code, and determine all transitive
designs invariant under Go(3) of degree 378 and attempt
to establish some connections with the results given in
(Wilson, 2012).

@ This talk is on codes defined as submodules of
permutation modules. e TETTC
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Background

Representations and modules

Definition

Let G be a finite group and let V be a vector space of
dimension n over the field F. Then a homomorphism

p: G — GL(n,TF) is said to be a matrix representation of G of
degree n over the field F, where GL(n,F) is the group of
invertible n x n matrices with entries from . We call the
column space, F™' of p the representation module of p. If the
characteristic of ¥ is zero then p is called an ordinary
representation while a representation over a field of non-zero
characteristic is called a modular representation.




Motivation Background

@ A representation p : G — GL(n,F) is said to be injective
if the kernel Ker(p) = {15}-

@ Representations are generally not injective but a
representation which is injective is called faithful
representation in which case we have G = Im(p) so that G
is isomorphic to a subgroup of GL(n,T).

@ Every group has a degree 1 matrix representation
p:G— GL(1,F) = F* defined by p(g) = 1r for all g € G.
This representation is called the trivial representation.

@ Recall from linear algebra that GL(V) = GL(n,F) given a
finite dimensional IF-vector space V.




Motivation Background

o Ifwelet®B = {vq,...,v,} be abasis for V then given any
g € G and a representation p: G — GL(V), p(g) € GL(V)
then we obtain that the corresponding matrix
representation p(g) € GL(n,F) with respect to the basis B
is given by p(g) = [aj] where

AD) =) av:
i=1

@ Similarly, if we are given an invertible matrix representation
p: G — GL(n,F) then for p(g) € GL(n,F) it follows that
we can define a representation o: G — GL(V) by
0(9)(v) = p(g)v where v € F™1 is a column vector in the
column space of p(g) with respect to the standard baa@.
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Motivation Background

IfF is a field and G a finite group, then there is a bijective
correspondence between finitely generated F G-modules and
representations of G on finite-dimensional F-vector spaces.

@ Representation theory can be formulated in the more
general context of algebras instead of groups.

@ In this situation a ring homomorphism p:FG — Endp(V),
where FG is the group ring of G over F, restricts to a
representation of G.

@ In such context V can be viewed as both a vector space
over F and a FG-module through the ring homomorphism

p-




Definition

Let G be a finite group and I be a field. The group ring of G
overIF is the set of all formal sums of the form

D> X9, Ag€EF
geG

with componentwise addition and multiplication

(Ag)(pn) = (Aw)(gh) (where X and 1. are multiplied in T and gh
is the product in G) extended to sums by means of the
distributive law.

@ It is a straightforward to verify that the group ring FG is a
vector space over FF; and thus we can form FG-modules.

@ We now depict the interplay between representations of G
and FG-modules. L g -

@ In particular, our interest will be in the correspondenc,g,\
between FG-modules and G-invariant subspaces. — secmsise
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Motivation Background

Definition

Letp: G — GL(n,F) be a representation of G on a vector
space V =TF". Let W C V be a subspace of V of dimension m
such that pg(W) C W for all g € G, then the map

G — GL(m,F) given by g — p(9)|W is a representation of G
called a subrepresentation of p. The subspace W is then said
to be G-invariant or a G-subspace. Every representation has
{0} and V as G-invariant subspaces. These two subspaces are
called trivial or improper subspaces.

Definition

A representation p: G — GL(n,F) of G with representation
moaule V is called reducible if there exists a proper non-zero
G-subspace U of V and it is said to be irreducible if the only
G-subspaces of V are the trivial ones.
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Motivation Background

Remark

The representation module V of an irreducible representation is
called simple and the p invariant subspaces of a representation
module V are called submodulesof V.

Definition

Let V be an FG-module. V is said to be decomposable if it can
be written as a direct sum of two F G-submodules, i.e., there
exist submodules U and W of V such thatV = U® W. If no
such submodules for V exist, V is called indecomposable. If V
can be written as a direct sum of irreducible submodules, then
V is called completely reducible or semisimple.
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Motivation Background

A completely reducible module, implies a decomposable
module, which implies a reducible one, but the converse is not
true in general.
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Background

FG-modules and G-invariant codes

We will present a development of coding theory based on the
correspondence between representations of G and
FG-modules.

Definition

LetTF be a finite field of g elements where q is a power of a
prime p, and G be a finite group acting primitively on a finite set
Q. Let V = FQ be the vector space over T, of all linear
combinations of > \ix, \j € F, x € Q i.e, the vector space with
basis the elements of Q2. To define an F G-module on V it
suffices to stipulate the action of the elements of G on the basis
elements of V. So we consider the group action

p : G— GL(V) defined by p(g) — p(9)(x), g€ G, x € V.
Extending linearly the induced G-action on V makes V into an | -
FG-module called an FQ-permutation module over FG.
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Background

A method of finding G-invariant codes

Let G be a finite group and 2 a finite G-set. Then the
FG-submodules of FQ2 are precisely the G-invariant codes (i.e.,
G-invariant subspaces of F{2).

The previous Lemma implicitly gives us the strategy of finding
all codes with a group G acting as an automorphism group.

We explicitly outline the steps. Given a permutation group G
acting on a finite set Q, and p : G — GL(V) where

p(m(x)) = m(x) with m € Gand x € V. The steps are as follows:

1 . Recognize (2 as a permutation module;

2. Find all the submodules of Fy<2;

3. By the earlier Lemma the submodules are the G-invariant
codes; € KRR Nt

4. Test equivalence and filter isomorphic copies; B S opnln

5. Test irreducibility of the code.

and Computer Science



Background

Binary codes from the group G,(3) of degree 378

@ Consider G to be the simple group Gz(3).

[ Max sub [ Degree [ # [ length ] [ [
U5(3):2 351 3 224 126
Us(3):2 351 3 224 126
(8,12 x 32).25, 364 4 243 108 12
(3: 72 x 39):25, 364 4 243 108 12
[5(3):2 378 4 208 117 52
[5(3):2 378 4 208 117 52
[,(8):3 2808 9 | 1512 504 252(2) | 84(2) 63 56
25 15(2) 3159 11| 672 448(4) | 224(2) | 168 64 14
[,(13) 3888 14 | 1092 | 546(2) | 364(2) | 182(3) | 91(3) | 78(2)
2174322 7371 32 | 576(4) | 288(14) | 144(2) | 96(4) | 72(3) | 64
Table: Orbits of a point-stabilizer of G»(3) q s or -
BN
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Background

Rank-4 action of G»(3) on the pairs of norm 2

vectors

@ Observe from the preceding Table that there are two
classes of non-conjugate maximal subgroups of Gx(3) of
index 378.

@ The stabilizer of a point is a maximal subgroup isomorphic
to the linear group L3(3):2.

@ The group Gz(3) acts as a rank-4 primitive group on the
cosets of L3(3):2 with orbits of lengths 1, 52, 117, and 208
respectively.

@ Using either sets of 378 vectors of norm 2 we form a
permutation module FQ of length 378.

@ We determine the submodule structure of the permutatlon W
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Remark

@ Recall that Q2: is a set images of 378 norm 2 vectors,
defined by the action of G»(3) on the cosets of L3(3):2

@ the group G»(3) has orbitals Iy, 1,2, 3 where
IFi(x)| =1,52,117,208 respectively.

@ Let Ag, A1, Ao, A3 be the matrices of the centralizer algebra
of (G,Q)

@ Let a; denote the endomorphism of the permutation
module FQ associated with the matrix A; or the orbital
graph ;.

@ Writel =T41 and a= a;.

@ The endomorphism algebra E(FQ) = Endrg(FQ2) has
basis (ag, a1, az, as) with ay = idrq.
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Motivation Background

@ The right regular representation of E(FQ) into F4*% is
defined as

X = (X,'k) where ajx = Zx,-kak.

@ From (D G Higman, 67) we have that matrices B; = ((&;)ix)
are the intersection matrices of the Graph (£2,T )
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Background

Submodules of 2 of length 378

[dim [0 [ 1 [14[15]90 91919192104 [ 104 ] ... |
0 VIiIvIiIv IV IV IV IV I V|V va v
1 v v v |V
14 va v v v
15 v
90 vV IV IV |V |V v
91 v v
91 v v
91 v |V
92 v
104 v
104 |
- s

Tahla: Partial view of the 1inner trianaiilar nart of the incidencra matriv



Background

The submodule structure of the permutation
module

There are 42 submodules of the permutation module F>2, and
thus 38 nontrivial 2-modular codes of length 378 invariant
under G»(3).
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Motivation Background

Proposition

If F = TF», then the following hold:
(a) FQ has precisely the following endo-submodules M; with

dimM,- = .
Mszs = FQ, My =0, M377 = Ker(ao +a + a + 33),
M, = Im(ao + a1 + a + 33), Mze3 = Ker(a1 ), Mis = Im(a1)

The submodules given in (a) form a series

Mo < My < Mis < Mgz < Ma77 < Mazs.

(b) For every v € E(FQ) we have Ker(v) = Im(v)*, so that
M- = Ms75_; for the end-submodules.

(c) My = {u|u € Mys and wt(u) = 0 (mod 4)} is an et "
FG-submodule of co-dimension 1 in Mys.
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Proposition

Set Magq = My4~. Then dim(M;) = i fori € {14,364} and

0=M < Mig < Mis < Magz < Mgy < Ma7g = FQ

is a composition series of FQ as an FG-module.

The dimension of the composition factors in this composition
series are 14, 1, 348, 1, 14.

(d) FQ has exactly one FG-submodule Myy of dimension 90.
Set Mogg = I\/’goL and dim(Mggg) = 288. We have

Mgy < Mgo < M3gs and also M4 < Mogg < Mags.

Between Mgy and My, there are exactly 3 distinct
FG-submodules My, My, and My, . Set

M287 = (M91 )L, M287’ = (I\/’91/)L and M287” = (Mg_lw)l. Then
dim(M;) = dim(M;) = i = dim(M,.) for i € {91,287} and .
My1, M91/ and M91~ are the only FG-submodules between Mgy | 2™
and Mg, . T
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Proposition
We have

0= Mo < Mgo < Mg1 < M92 < Mggs < M287 < M288 < M378 = FQ

0=My < My < Mg1l < Mgy < Magg < M287/ < Mogg < Ma7g = RQ,

0=My < My < M91// < Mg < Mg < M287” < Mogg < M7 = FQ

is a composition series of FQ) as an FG-module.
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The codes from a representation of degree 378

under G

Theorem

Let G = Go(3) be the simple untwisted Chevalley group in
either of its rank-4 representation on Q) of degree 378. Then
every linear code Co(M;) over the field F = GF(2) admitting G
is obtained up to isomorphism from one of the FG-submodules
of the permutation module FQ which are given in the last
proposition.
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Motivation Background

(i) Co(Mys) is a [378,15,144], decomposable code with 378
words of weight 144, and its dual Co(Mis)" is a
[378, 363, 4]> code with 100737 words of weight 4.
(i) 1 € Co(Mis).
(iii) Co(Mys) is a decomposable module, i.e,
Co(My5) = K @ (1) where K is a 14-dimensional
F>-module invariant under Go(3).

@iv) Aut(Cg(M15)) = 62(3)
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The codes from a representation of degree 378

under G

(i) Co(My4) is a[378,14,144], irreducible, doubly-even code
with 378 words of weight 144, and its dual Co(Mi4)* is a
[378, 364, 3], code with 3276 words of weight 3.

(ii) The words of minimum weight in Co(My4) form a basis for
the code.

(iii) 1 ¢ Co(Mia).

(iv) Co(Mi4) is the unique and smallest irreducible
14-dimensional F»-module invariant under Gz (3).

(v) Aut(CQ(M14)) = 62(3)
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sketch of a proof

Proof:

@ The reduction modulo 2 of the ordinary character of G»(3)
of degree 14 gives rise to a faithful 2-modular character of
Go(3), see [2, 7].

@ This in turn establishes the 2-rank (dimension over F») of
C>(M;4). Since the 2-rank of Co(My4) equals the
dimension of the hull (i.e., 2-rank of Co(M;4) equals 2-rank
of Co(My4) N Co(Mi4) ™) we deduce that
Co(Myy) C CQ(M14)J_ and so Co(M;4) is self-orthogonal.

@ Observe from TABLE | below, that there are exactly 378
vectors of minimum words, and these form the generating
vectors of the code. Since the spanning words have weight
144, C5(M,4) is doubly-even. In TABLE |, / represents the | . .
weight of a codeword and A, denotes the number of € T

|
. YAKWAZULU-NATALI
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sketch of a proof

TABLE |
The weight distribution of Co(M;4)
i Ai i Aj
0 1 192 7371
144 378 196 3888
180 4368 208 378

@ Using the weight enumerator given above we can easily
see that Co(M;4) does not contain an invariant subspace
of dimension 1.

@ Also [2, 7] (see also [6]) establish that G»(3) has no
irreducible modules over F» with dimensions between 2
and 13.

@ Hence C,(Myy) is the 14-dimensional F, module on WhICh
G»(3) acts irreducibly.

° Furthermore computation with Magma [1] show thatL
Co(M:4)* has minimum weight 3. B
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Thank you for your presence !!
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