On a 14-dimensional self-orthogonal code invariant under the simple group $G_2(3)$

Bernardo Rodrigues

School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Durban, South Africa

ALCOMA15

Kloster Banz, March 2015

Motivation

- (Rob Wilson, 2012) examined an interplay that exists between the 14-dimensional real representation of the finite simple group $G_2(3)$ and the smallest Ree group in characteristic 3.
- Using the pairs of 378 norm 2 vectors (Wilson) showed how the compact real form of a simple Lie algebra gives rise to an interesting lattice with automorphism group whose order is larger than one would expect.
- Using the approach taken by Wilson we consider either sets of norm 2 vectors and construct a permutation module of dimension 378 over GF(2) and view this 14-dimensional lattice is an faithful and irreducible submodule.

(日)

Motivation

- We show that this code is self-orthogonal and doubly-even with automorphism group isomorphic to the simple group *G*₂(3).
- We give a geometric description of the nature all classes of non-zero weight codewords.
- We describe the structure of the stabilizers of the non-zero weight codewords in the code, and determine all transitive designs invariant under $G_2(3)$ of degree 378 and attempt to establish some connections with the results given in (Wilson, 2012).

 This talk is on codes defined as submodules of permutation modules.

Representations and modules

Definition

Let G be a finite group and let V be a vector space of dimension n over the field \mathbb{F} . Then a homomorphism $\rho: G \longrightarrow GL(n, \mathbb{F})$ is said to be a matrix representation of G of degree n over the field \mathbb{F} , where $GL(n, \mathbb{F})$ is the group of invertible $n \times n$ matrices with entries from \mathbb{F} . We call the column space, $\mathbb{F}^{n \times 1}$ of ρ the representation module of ρ . If the characteristic of \mathbb{F} is zero then ρ is called an ordinary representation while a representation over a field of non-zero characteristic is called a modular representation.

Remark

- A representation ρ : G → GL(n, 𝔽) is said to be injective if the kernel Ker(ρ) = {1_G}.
- Representations are generally not injective but a representation which is injective is called faithful representation in which case we have G ≃ Im(ρ) so that G is isomorphic to a subgroup of GL(n, F).
- Every group has a degree 1 matrix representation

 ρ̂: G → GL(1, 𝔅) = 𝔅^{*} defined by ρ(g) = 1_𝔅 for all g ∈ G.

 This representation is called the trivial representation.
- Recall from linear algebra that GL(V) ≅ GL(n, 𝔅) given a finite dimensional 𝔅-vector space V.

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

If we let 𝔅 = {v₁,..., v_n} be a basis for V then given any g ∈ G and a representation ρ: G → GL(V), ρ(g) ∈ GL(V) then we obtain that the corresponding matrix representation ρ(g) ∈ GL(n, 𝔅) with respect to the basis 𝔅 is given by ρ(g) = [a_{ij}] where

$$\rho(g)(\mathbf{v}_j) = \sum_{i=1}^n \mathbf{a}_{ij}\mathbf{v}_i.$$

Similarly, if we are given an invertible matrix representation

 ρ: G → GL(n, F) then for ρ(g) ∈ GL(n, F) it follows that
 we can define a representation ρ: G → GL(V) by
 <u>ρ</u>(g)(v) = ρ(g)v where v ∈ F^{n×1} is a column vector in the
 column space of ρ(g) with respect to the standard basis.

(日)

Theorem

If \mathbb{F} is a field and G a finite group, then there is a bijective correspondence between finitely generated \mathbb{F} G-modules and representations of G on finite-dimensional \mathbb{F} -vector spaces.

- Representation theory can be formulated in the more general context of algebras instead of groups.
- In this situation a ring homomorphism ρ: 𝔽G → End_𝔅(𝒱), where 𝔽G is the group ring of G over 𝔅, restricts to a representation of G.
- In such context V can be viewed as both a vector space over F and a FG-module through the ring homomorphism ρ.

Definition

Let G be a finite group and $\mathbb F$ be a field. The group ring of G over $\mathbb F$ is the set of all formal sums of the form

$$\sum_{oldsymbol{g}\in oldsymbol{G}}\lambda_{oldsymbol{g}}oldsymbol{g},\ \lambda_{oldsymbol{g}}\in\mathbb{F}$$

with componentwise addition and multiplication $(\lambda_g)(\mu_h) = (\lambda\mu)(gh)$ (where λ and μ are multiplied in \mathbb{F} and gh is the product in G) extended to sums by means of the distributive law.

- It is a straightforward to verify that the group ring 𝔽*G* is a vector space over 𝔅; and thus we can form 𝔽*G*-modules.
- We now depict the interplay between representations of G and FG-modules.
- In particular, our interest will be in the correspondence wave automatic stress between FG-modules and G-invariant subspaces.

Definition

Let $\rho: G \longrightarrow GL(n, \mathbb{F})$ be a representation of G on a vector space $V = \mathbb{F}^n$. Let $W \subseteq V$ be a subspace of V of dimension msuch that $\rho_g(W) \subseteq W$ for all $g \in G$, then the map $G \rightarrow GL(m, \mathbb{F})$ given by $g \longmapsto \rho(g) | W$ is a representation of Gcalled a subrepresentation of ρ . The subspace W is then said to be G-invariant or a G-subspace. Every representation has $\{0\}$ and V as G-invariant subspaces. These two subspaces are called trivial or improper subspaces.

Definition

A representation $\rho: G \longrightarrow GL(n, \mathbb{F})$ of G with representation module V is called reducible if there exists a proper non-zero G-subspace U of V and it is said to be irreducible if the only G-subspaces of V are the trivial ones.

ITY OF -NATAL /ESI U-NATALI . Statistics

Remark

The representation module V of an irreducible representation is called simple and the ρ invariant subspaces of a representation module V are called submodules of V.

Definition

Let V be an $\mathbb{F}G$ -module. V is said to be decomposable if it can be written as a direct sum of two $\mathbb{F}G$ -submodules, i.e., there exist submodules U and W of V such that $V = U \oplus W$. If no such submodules for V exist, V is called indecomposable. If V can be written as a direct sum of irreducible submodules, then V is called completely reducible or semisimple.

Remark

A completely reducible module, implies a decomposable module, which implies a reducible one, but the converse is not true in general.

F*G*-modules and *G*-invariant codes

We will present a development of coding theory based on the correspondence between representations of G and $\mathbb{F}G$ -modules.

Definition

Let \mathbb{F} be a finite field of q elements where q is a power of a prime p, and G be a finite group acting primitively on a finite set Ω . Let $V = \mathbb{F}\Omega$ be the vector space over \mathbb{F} , of all linear combinations of $\sum \lambda_i x$, $\lambda_i \in \mathbb{F}$, $x \in \Omega$ i.e, the vector space with basis the elements of Ω . To define an $\mathbb{F}G$ -module on V it suffices to stipulate the action of the elements of G on the basis elements of V. So we consider the group action $\rho : G \longrightarrow GL(V)$ defined by $\rho(g) \mapsto \rho(g)(x), g \in G, x \in V$. Extending linearly the induced G-action on V makes V into an $\mathbb{F}G$ -module called an $\mathbb{F}\Omega$ -permutation module over $\mathbb{F}G$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

ITY OF

U-NATAL

A method of finding *G*-invariant codes

Lemma

Let G be a finite group and Ω a finite G-set. Then the \mathbb{F} G-submodules of $\mathbb{F}\Omega$ are precisely the G-invariant codes (i.e., G-invariant subspaces of $\mathbb{F}\Omega$).

The previous Lemma implicitly gives us the strategy of finding all codes with a group *G* acting as an automorphism group. We explicitly outline the steps. Given a permutation group *G* acting on a finite set Ω , and $\rho : G \longrightarrow GL(V)$ where $\rho(\pi(x)) = \pi(x)$ with $\pi \in G$ and $x \in V$. The steps are as follows:

- 1 . Recognize $\mathbb{F}_{\rho}\Omega$ as a permutation module;
- **2**. Find all the submodules of $\mathbb{F}_{\rho}\Omega$;
- 3. By the earlier Lemma the submodules are the *G*-invariant codes;
- 4. Test equivalence and filter isomorphic copies;
- 5. Test irreducibility of the code.

Binary codes from the group $G_2(3)$ of degree 378

• Consider G to be the simple group $G_2(3)$.

Max sub	Degree	#	length					
U ₃ (3):2	351	3	224	126				
U ₃ (3):2	351	3	224	126				
$(3_+^{1+2} \times 3^2):2S_4$	364	4	243	108	12			
$(3^{+1+2}_{+} \times 3^2):2S_4$	364	4	243	108	12			
L ₃ (3):2	378	4	208	117	52			
L ₃ (3):2	378	4	208	117	52			
L ₂ (8):3	2808	9	1512	504	252(2)	84(2)	63	56
$2^{3} L_3(2)$	3159	11	672	448(4)	224(2)	168	64	14
L ₂ (13)	3888	14	1092	546(2)	364(2)	182(3)	91(3)	78(2)
2 ¹⁺⁴ :3 ² .2	7371	32	576(4)	288(14)	144(2)	96(4)	72(3)	64

Table: Orbits of a point-stabilizer of $G_2(3)$

Rank-4 action of $G_2(3)$ on the pairs of norm 2 vectors

- Observe from the preceding Table that there are two classes of non-conjugate maximal subgroups of G₂(3) of index 378.
- The stabilizer of a point is a maximal subgroup isomorphic to the linear group L₃(3):2.
- The group G₂(3) acts as a rank-4 primitive group on the cosets of L₃(3):2 with orbits of lengths 1, 52, 117, and 208 respectively.
- Using either sets of 378 vectors of norm 2 we form a permutation module FΩ of length 378.
- We determine the submodule structure of the permutation module of length 378 over GF(2)

< ロ > < 同 > < 回 > < 回 >

Remark

- Recall that Ω: is a set images of 378 norm 2 vectors, defined by the action of G₂(3) on the cosets of L₃(3):2
- the group G₂(3) has orbitals Γ₀, Γ₁, Γ₂, Γ₃ where |Γ_i(x)| = 1,52,117,208 respectively.
- Let A₀, A₁, A₂, A₃ be the matrices of the centralizer algebra of (G, Ω)
- Let a_i denote the endomorphism of the permutation module FΩ associated with the matrix A_i or the orbital graph Γ_i.
- Write $\Gamma = \Gamma_1$ and $a = a_1$.
- The endomorphism algebra E(FΩ) = End_{FG}(FΩ) has basis (a₀, a₁, a₂, a₃) with a₀ = id_{FΩ}.

< ロ > < 同 > < 回 > < 回 >

Remark

 The right regular representation of E(FΩ) into F^{4×4} is defined as

$$x \mapsto (x_{ik})$$
 where $a_i x = \sum x_{ik} a_k$.

• From (D G Higman, 67) we have that matrices $B_j = ((a_j)_{ik})$ are the intersection matrices of the Graph (Ω, Γ_j)

Submodules of Ω of length 378

dim	0	1	14	15	90	91	91	91	92	104	104	
0	\checkmark											
1		\checkmark		\checkmark				\checkmark	\checkmark			
14			\checkmark	\checkmark						\checkmark	\checkmark	
15				\checkmark								
90					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
91						\checkmark			\checkmark			
91							\checkmark		\checkmark			
91								\checkmark	\checkmark			
92									\checkmark			
104										\checkmark		
104											1	UNIVERSITY OF
-												WAZULU-NATAL INYUVESI WAZULU-NATA tematics. Statistic

Table: Partial view of the upper triangular part of the incidence matrix

The submodule structure of the permutation module

There are 42 submodules of the permutation module $F_2\Omega$, and thus 38 nontrivial 2-modular codes of length 378 invariant under $G_2(3)$.

If $F = \mathbb{F}_2$ then the following hold: (a) $F\Omega$ has precisely the following endo-submodules M_i with $\dim M_i = i$.

$$M_{378} = F\Omega, M_0 = 0, M_{377} = Ker(a_0 + a_1 + a_2 + a_3),$$

 $M_1 = Im(a_0 + a_1 + a_2 + a_3), M_{363} = Ker(a_1), M_{15} = Im(a_1)$

The submodules given in (a) form a series $M_0 < M_1 < M_{15} < M_{363} < M_{377} < M_{378}$. (b) For every $v \in E(F\Omega)$ we have $Ker(v) = Im(v)^{\perp}$, so that $M_i^{\perp} = M_{378-i}$ for the end-submodules. (c) $M_{14} = \{u \mid u \in M_{15} \text{ and } wt(u) \equiv 0 \pmod{4}\}$ is an FG-submodule of co-dimension 1 in M_{15} .

ITY OF

U-NATAL

Set $M_{364} = M_{14}^{\perp}$. Then dim $(M_i) = i$ for $i \in \{14, 364\}$ and

$$0 = M_0 < M_{14} < M_{15} < M_{363} < M_{364} < M_{378} = F\Omega$$

is a composition series of $F\Omega$ as an FG-module. The dimension of the composition factors in this composition series are 14. 1. 348. 1. 14. (d) $F\Omega$ has exactly one FG-submodule M_{90} of dimension 90. Set $M_{288} = M_{90}^{\perp}$ and dim $(M_{288}) = 288$. We have $M_{91} < M_{92} < M_{364}$ and also $M_{14} < M_{288} < M_{363}$. Between M₉₀ and M₉₂ there are exactly 3 distinct FG-submodules $M_{91}, M_{q1'}$ and $M_{q1''}$. Set $M_{287} = (M_{91})^{\perp}, M_{287'} = (M_{01'})^{\perp}$ and $M_{287''} = (M_{01''})^{\perp}$. Then $\dim(M_i) = \dim(M_{i'}) = i = \dim(M_{i''})$ for $i \in \{91, 287\}$ and $M_{91}, M_{01'}$ and $M_{01''}$ are the only FG-submodules between M_{90} and M_{92} .

ITY OF -NATAL V=NATALI V=NATALI Statistics ance

We have

$$\begin{split} 0 &= M_0 < M_{90} < M_{91} < M_{92} < M_{286} < M_{287} < M_{288} < M_{378} = F\Omega, \\ 0 &= M_0 < M_{90} < M_{91'} < M_{92} < M_{286} < M_{287'} < M_{288} < M_{378} = F\Omega, \\ 0 &= M_0 < M_{90} < M_{91''} < M_{92} < M_{286} < M_{287''} < M_{288} < M_{378} = F\Omega \\ is a composition series of F\Omega as an FG-module. \end{split}$$

The codes from a representation of degree 378 under *G*

Theorem

Let $G = G_2(3)$ be the simple untwisted Chevalley group in either of its rank-4 representation on Ω of degree 378. Then every linear code $C_2(M_i)$ over the field F = GF(2) admitting Gis obtained up to isomorphism from one of the FG-submodules of the permutation module $F\Omega$ which are given in the last proposition.

- (i) C₂(M₁₅) is a [378, 15, 144]₂ decomposable code with 378 words of weight 144, and its dual C₂(M₁₅)[⊥] is a [378, 363, 4]₂ code with 100737 words of weight 4.
- (ii) $\mathbf{1} \in C_2(M_{15})$.
- (iii) $C_2(M_{15})$ is a decomposable module, i.e, $C_2(M_{15}) = \mathcal{K} \oplus \langle \mathbf{1} \rangle$ where \mathcal{K} is a 14-dimensional \mathbb{F}_2 -module invariant under $G_2(3)$.

(iv) Aut $(C_2(M_{15})) \cong G_2(3)$.

< ロ > < 同 > < 回 > < 回 >

The codes from a representation of degree 378 under *G*

Proposition

- (i) $C_2(M_{14})$ is a [378, 14, 144]₂ irreducible, doubly-even code with 378 words of weight 144, and its dual $C_2(M_{14})^{\perp}$ is a [378, 364, 3]₂ code with 3276 words of weight 3.
- (ii) The words of minimum weight in $C_2(M_{14})$ form a basis for the code.
- (iii) $\mathbf{1} \notin C_2(M_{14})$.
- (iv) $C_2(M_{14})$ is the unique and smallest irreducible 14-dimensional \mathbb{F}_2 -module invariant under $G_2(3)$.

(v) Aut $(C_2(M_{14})) \cong G_2(3)$

sketch of a proof

Proof:

- The reduction modulo 2 of the ordinary character of $G_2(3)$ of degree 14 gives rise to a faithful 2-modular character of $G_2(3)$, see [2, 7].
- This in turn establishes the 2-rank (dimension over \mathbb{F}_2) of $C_2(M_{14})$. Since the 2-rank of $C_2(M_{14})$ equals the dimension of the hull (i.e., 2-rank of $C_2(M_{14})$ equals 2-rank of $C_2(M_{14}) \cap C_2(M_{14})^{\perp}$) we deduce that $C_2(M_{14}) \subseteq C_2(M_{14})^{\perp}$ and so $C_2(M_{14})$ is self-orthogonal.
- Observe from TABLE I below, that there are exactly 378 vectors of minimum words, and these form the generating vectors of the code. Since the spanning words have weight 144, C₂(M₁₄) is doubly-even. In TABLE I, / represents the weight of a codeword and A₁ denotes the number of codewords in C₂(M₁₄) of weight *I*.

(日)

sketch of a proof

TABLE I The weight distribution of $C_2(M_{14})$

i	Ai	i	Ai
0	1	192	7371
144	378	196	3888
180	4368	208	378

- Using the weight enumerator given above we can easily see that $C_2(M_{14})$ does not contain an invariant subspace of dimension 1.
- Also [2, 7] (see also [6]) establish that G₂(3) has no irreducible modules over F₂ with dimensions between 2 and 13.
- Hence $C_2(M_{14})$ is the 14-dimensional \mathbb{F}_2 module on which $G_2(3)$ acts irreducibly.
- Furthermore, computation with Magma [1] show that
 C₂(M₁₄)[⊥] has minimum weight 3.

Thank you for your presence !!!!

J. Cannon, A. Steel, and G. White.

Linear codes over finite fields.

In J. Cannon and W. Bosma, editors, *Handbook of Magma Functions*, pages 3951–4023. Computational Algebra Group, Department of Mathematics, University of Sydney, 2006.

V2.13, http://magma.maths.usyd.edu.au/magma.

C. Jansen, K. Lux, R. Parker, and R. Wilson., An Atlas of Brauer Characters, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press Oxford University Press, New York, 1995, Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications.

René Peeters.

Uniqueness of strongly regular graphs having minimal *p*-rank.

Linear Algebra and its Applications., 226-228(1995

