Introduction
Motivation and the related work
Our approach
A family of MRD codes for k=2

Some Non-Gabidulin MRD Codes

Kamil Otal and Ferruh Özbudak

Middle East Technical University

Algebraic combinatorics and applications, ALCOMA15 (Conference in memory of Axel Kohnert)
March 15-20, 2015 / Kloster Banz, Germany.

Outline

- Introduction
 - Rank metric codes
 - MRD codes
 - Gabidulin codes
- Motivation and the related work
- Our approach
 - Linearized polynomials and rank metric codes
 - Linearized combination
 - Construction of MRD codes via linearized combinations
- A family of MRD codes for k=2

Rank metric codes

- Let $\mathbb{F}_q^{m \times n}$ be the set of $m \times n$ matrices over \mathbb{F}_q .
- Assume $m \le n$ w.l.o.g.
- The **rank distance** on $\mathbb{F}_q^{m \times n}$ is the metric

$$d(A, B) = rank(A - B)$$

for all $A, B \in \mathbb{F}_q^{m \times n}$.

- A rank metric code is a nonempty subset $C \subseteq \mathbb{F}_q^{m \times n}$ with this distance.
- The **minimum distance** of a code C is

$$d(\mathcal{C}) = \min\{d(A, B) : A, B \in \mathcal{C} \text{ and } A \neq B\}.$$

Rank metric codes

ullet If a rank metric code $\mathcal{C}\subseteq \mathbb{F}_q^{m imes n}$ is linear, then

$$d(C) = \min\{rank(A) : A \in C \text{ and } A \neq 0\}.$$

In some studies, rank(A) is called the **rank weight** of A and is denoted by wt(A).

• The **equivalence** of two rank metric codes $C, C' \subseteq \mathbb{F}_q^{m \times n}$:

$$\mathcal{C} \approx \mathcal{C}' \Leftrightarrow \mathcal{C}' = X\mathcal{C}Y$$

for some $X \in GL(\mathbb{F}_q, m)$ and $Y \in GL(\mathbb{F}_q, n)$.

Rank metric codes

Remark

Equivalence notion in the literature^a:

- Case $m \neq n$: $C \approx C' \Leftrightarrow C' = XCY$ for some $X \in GL(\mathbb{F}_q, m)$ and $Y \in GL(\mathbb{F}_q, n)$,
- Case m = n: $C \approx C' \Leftrightarrow C' = XCY$ or XC^tY for some $X, Y \in GL(\mathbb{F}_q, n)$

due to the related result of Morrison^b, where C^t denotes the set of transpose elements.

^aJ. Cruz, M. Kiermaier, A. Wassermann and W. Willems, *Algebraic structures of MRD codes*, preprint.

^bK. Morrison, Equivalence of rank-metric and matrix codes and automorphism groups of Gabidulin codes, ArXiv:1304.0501v1, 2013.

MRD codes

Singleton-like bound:

$$|\mathcal{C}| \leq q^{n(m-d(\mathcal{C})+1)}$$
.

This bound is the *q*-analogue of Singleton bound.

- If this bound is met, then the code is called maximum rank distance (MRD) code. MRD codes are the q-analogue of MDS codes.
- There is an important class of linear MRD codes,
 Gabidulin codes¹, which is the q-analogue of RS codes.

¹E. M. Gabidulin, *The theory with maximal rank metric distance*, Probl. Inform. Transm., 21, pp. 1-12, 1985.

Theorem & Definition of Gabidulin Codes^a

^aE. M. Gabidulin, *The theory with maximal rank metric distance*, Probl. Inform. Transm., 21, pp. 1-12, 1985.

Let

- $0 < k \le m$,
- $\alpha_1,...,\alpha_m \in \mathbb{F}_{q^n}$ be \mathbb{F}_q -linearly independent elements,
- $\theta: \mathbb{F}_{q^n} \to \mathbb{F}_q^n$ be the coordinate transformation

$$c_1\beta_1 + c_2\beta_2 + ... + c_n\beta_n \mapsto (c_1, c_2, ..., c_n)$$

with respect to a fixed \mathbb{F}_q -basis $\{\beta_1, \beta_1, ..., \beta_n\}$ of \mathbb{F}_{q^n} ,

Theorem & Definition of Gabidulin Codes (Continued)

• \mathcal{L}_k be the set of linearized polynomials over \mathbb{F}_{q^n} of degree less than q^k , i.e.

$$\mathcal{L}_k = \{a_0 T + ... + a_{k-1} T^{q^{k-1}} : a_0, ..., a_{k-1} \in \mathbb{F}_{q^n}\}.$$

Then the set

$$C = \left\{ \begin{bmatrix} \theta(f(\alpha_1)) \\ \vdots \\ \theta(f(\alpha_m)) \end{bmatrix} : f \in \mathcal{L}_k \right\} \subseteq \mathbb{F}_q^{m \times n}$$

is an \mathbb{F}_q -linear rank metric code with $d(\mathcal{C}) = m - k + 1$ and $|\mathcal{C}| = q^{nk}$, i.e. a linear MRD code.

Proposition

Let $\mathcal{C} \subseteq \mathbb{F}_q^{m \times n}$ be a Gabidulin code with the notations in the previous theorem.

- Multiplying $\mathcal C$ with an invertible matrix from the left corresponds to alter $\mathbb F_q$ -linearly independent elements $\alpha_1,...,\alpha_m\in\mathbb F_{q^n}$ to $\alpha'_1,...,\alpha'_m\in\mathbb F_{q^n}$ such that both are bases of the same subspace.
- Multiplying C with an invertible matrix from the right corresponds to alter the \mathbb{F}_q -basis $\beta_1, ..., \beta_n$ of \mathbb{F}_{q^n} .

Corollary

All Gabidulin codes $\subseteq \mathbb{F}_q^{n \times n}$ having the same minimum distance are in one equivalence class, and a code in this class is a Gabidulin code.

Motivation and the related work

Question

How can we produce non-Gabidulin MRD codes?

Cruz et al² have investigated this question and obtained very nice results especially for the full rank case (i.e. for n = m = d(C)):

- They have proved that there is a bijective correspondence between linear MRD codes and finite quasifields.
- They have linear (e.g. corresponds to semifields) and nonlinear (e.g. corresponds to nearfields) examples.

²J. Cruz, M. Kiermaier, A. Wassermann and W. Willems, *Algebraic structures of MRD codes*, preprint.

Motivation and the related work

• They have also some computational results for the case $q=3, n=m=3, d(\mathcal{C})=2$. They say that there are two class of linear MRD codes, one of them is Gabidulin. For the other one they have a basis

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 2 & 0 & 2 \end{pmatrix},$$
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 2 \end{pmatrix}.$$

They have asked for a way to produce such codes. This was our the main motivation.

Linearized polynomials and rank metric codes

In our approach, one of the main ideas we use:

Fact

There is a one to one correspondence between a matrix of dimension $m \times n$ over \mathbb{F}_q and a linearized polynomial map $V \to \mathbb{F}_{q^n}$ (up to a fixed \mathbb{F}_q -basis of \mathbb{F}_{q^n}) where V is an m-dimensional \mathbb{F}_{q} -subspace of \mathbb{F}_{q^n} .

Linearized polynomials and rank metric codes

Example

The set

$$\mathcal{C} = span_{\mathbb{F}_{q^n}} \{T, T^q, ..., T^{q^{k-1}}\} \subseteq \mathbb{F}_{q^n}[T],$$

or equivalently

$$\begin{array}{ll} \mathcal{C} &= \textit{span}_{\mathbb{F}_q} \{ & \beta_1 \, T, \beta_2 \, T, ..., \beta_n T, \\ & \beta_1 \, T^q, \beta_2 \, T^q, ..., \beta_n T^q, \\ & \vdots \\ & \beta_1 \, T^{q^{k-1}}, \beta_2 \, T^{q^{k-1}}, ..., \beta_n T^{q^{k-1}} \} \end{array}$$

is a Gabidulin code with d(C) = m - k + 1, where $\{\beta_1, ..., \beta_n\}$ is an \mathbb{F}_a -basis of \mathbb{F}_{a^n} .

Linearized polynomials and rank metric codes

This example indicates an important property of Gabidulin codes: Gabidulin codes are not only \mathbb{F}_q -linear but also \mathbb{F}_{q^n} -linear. Therefore, if we want to construct a non-Gabidulin MRD code, then it makes sense to search for ones which are \mathbb{F}_q -linear but not \mathbb{F}_{q^n} -linear.

Linearized combination

This example says something more: Consider the Gabidulin codes in the previous example as

$$\{x_0T+x_1T^q+...+x_{k-1}T^{q^{k-1}}+0T^{q^k}+...+0T^{q^{n-1}}:x_0,...,x_{k-1}\in\mathbb{F}_{q^n}\}.$$

Here the coefficients can be considered as independent variables. In that way, take the set

$$\left\{\sum_{i=0}^{n-1} L_i(x_0,...,x_{k-1}) T^{q^i} : x_0,...,x_{k-1} \in \mathbb{F}_{q^n}\right\}$$

where each L_i is a multivariable linearized polynomial for all $0 \le i \le n-1$. We will call this procedure as \mathbb{F}_{q^n} -linearized combination of T^{q^i} s.

Multivariable linearized polynomials

Remark that multivariable linearized polynomials have no mixed terms ³. That is, they are of the form

$$L(x_1,...,x_k) = L_1(x_1) + ... + L_k(x_k)$$

where L_i is a linearized polynomial in one variable for all i = 1, ..., k.

Example

All linear maps $(\mathbb{F}_{q^2})^2 o \mathbb{F}_{q^2}$ are of the form

$$L(x,y) = a_0x + a_1x^q + b_0y + b_1y^q \in \mathbb{F}_{q^2}[x,y]$$

where $a_0, a_1, b_0, b_1 \in \mathbb{F}_{q^2}$.

³J. Berson, *Linearized polynomial maps over finite fields*, Journal of Algebra 399, pp. 389 – 406, 2014.

Construction of MRD codes via linearized combinations

Proposition

Consider the linearized polynomial

$$C_{x_1,...,x_k}(T) = \sum_{i=0}^{n-1} L_i(x_1,...,x_k) T^{q^i} \in \mathbb{F}_{q^n}[T]$$

where L_i is a multivariable linearized polynomial in $\mathbb{F}_{q^n}[x_1,...,x_k]$ which maps $(\mathbb{F}_{q^n})^k \to \mathbb{F}_{q^n}$ for all i=0,1,...,n-1. Let

- $\phi: (\mathbb{F}_{q^n})^k \to \mathbb{F}_{q^n}[T]$ given by $(x_1, ..., x_k) \mapsto C_{x_1, ..., x_k}(T)$ be one to one, and
- $dim_{\mathbb{F}_q}(kernel(C_{x_1,...,x_k}(T))) \le k-1$ for all $x_1,...,x_k \in \mathbb{F}_{q^n}$ which are not all zero.

Construction of MRD codes via linearized combinations

Proposition (Continued)

Then the set

$$\{C_{x_1,...,x_k}(T):x_1,...,x_k\in\mathbb{F}_{q^n}\}\subseteq\mathbb{F}_{q^n}[T]$$

corresponds to a linear MRD code $C \subseteq \mathbb{F}_q^{n \times n}$ with $|C| = q^{nk}$ and d(C) = n - k + 1.

Construction of MRD codes via linearized combinations

Proposition

Consider two codes with the linearized combinations $C_{x_1,\dots,x_k}^{(1)}(T)$ and $C_{x_1,\dots,x_k}^{(2)}(T)$ as in the previous theorem. These codes are equivalent if and only if there exist linearized permutation polynomial maps $A(T), B(T) : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ such that

$$A(T) \circ C_{x_1,...,x_k}^{(1)}(T) \circ B(T) = C_{u_1,...,u_k}^{(2)}(T)$$

with some one to one mapping

$$(x_1,...,x_k)\mapsto (u_1,...,u_k)$$

where o denotes the composition of functions.

Theorem

Let $\alpha, \beta \in \mathbb{F}_{q^3}$ such that $Norm_{q^3/q}(\alpha) \neq 1$ and $Norm_{q^3/q}(\beta) \neq 1$. The set

$$\mathbf{C}^{\alpha} = \{ \mathbf{C}_{x,y}^{\alpha}(T) = xT + yT^{q} + \alpha y^{q^{2}}T^{q^{2}} : x, y \in \mathbb{F}_{q^{3}} \} \subseteq \mathbb{F}_{q^{3}}[T].$$

corresponds to a linear MRD code $\mathcal{C}\subseteq\mathbb{F}_q^{3\times3}$ with $|\mathcal{C}|=q^6$ and $d(\mathcal{C})=2$. Moreover,

- If $\alpha = 0$ then it is Gabidulin.
- If $Norm_{q^3/q}(\alpha) \neq Norm_{q^3/q}(\beta)$ then C^{α} and C^{β} corresponds to non-equivalent codes.
- If $Norm_{q^3/q}(\alpha) = Norm_{q^3/q}(\beta)$ then C^{α} and C^{β} corresponds to equivalent codes.

Sketch of the Proof

Obviously the set

$$\mathbf{C}^{\alpha} = \{ \mathbf{C}_{x,y}^{\alpha}(T) = xT + yT^{q} + \alpha y^{q^{2}} T^{q^{2}} : x, y \in \mathbb{F}_{q^{3}} \}$$

is \mathbb{F}_q -linear, and it is Gabidulin when $\alpha = 0$. Moreover,

$$\phi: \quad \mathbb{F}_{q^3} \times \mathbb{F}_{q^3} \quad \to \quad \mathbb{F}_{q^3}[T]$$

$$(x, y) \quad \mapsto \quad C_{x, y}^{\alpha}(T)$$

is one to one, i.e. that implies C^{α} has q^6 elements.

Sketch of the Proof (Continued)

Additionally,

$$rank_{\mathbb{F}_q}(xT+yT^q+\alpha y^{q^2}T^{q^2})\geq 2$$

when *x* and *y* are not both zero. To see it, observe that the Dickson matrix

$$\begin{bmatrix} x & y & \alpha y^{q^2} \\ \alpha^q y & x^q & y^q \\ y^{q^2} & \alpha^{q^2} y^q & x^{q^2} \end{bmatrix}$$

of it can not have rank 1 since $Norm_{q^3/q}(\alpha) \neq 1$. Therefore, it is \mathbb{F}_q -linear MRD.

Sketch of the Proof (Continued)

When $Norm_{q^3/q}(\alpha) = Norm_{q^3/q}(\beta)$, let $\alpha = \gamma^r$ and $\beta = \gamma^s$ for some integers r and s and a primitive element $\gamma \in \mathbb{F}_{q^3}$. $Norm_{q^3/q}(\alpha) = Norm_{q^3/q}(\beta)$ implies

$$\gamma^{(r-s)(q^2+q+1)}=1$$

and thus q - 1|r - s, i.e. r = s + (q - 1)t for some integer t. Therefore,

$$A(T) = \gamma^{s-t} T^{q^2}$$
 and $B(T) = T^q$

can be used to show the equivalence in case $Norm_{q^3/q}(\alpha) = Norm_{q^3/q}(\beta)$. Here, $(u, v) = (\gamma^{s-t}x^{q^2}, \gamma^{s-t}y^{q^2})$.

Sketch of the Proof (Continued)

When $Norm_{q^3/q}(\alpha) \neq Norm_{q^3/q}(\beta)$, assume there exist linearized permutation polynomials $A(T) = a_0T + a_1T^q + a_2T^{q^2}$, $B(T) = b_0T + b_1T^q + b_2T^{q^2} \in \mathbb{F}_{q^3}[T]$ such that

$$A(T)\circ(xT+yT^q+\alpha y^{q^2}T^{q^2})\circ B(T)=(uT+vT^q+\beta v^{q^2}T^{q^2})$$

for some one to one correspondence $(x, y) \leftrightarrow (u, v)$. Then, use the property

$$\beta$$
(the coefficient of T^q) $^{q^2}$ = (the coefficient of T^{q^2})

Sketch of the Proof (Continued)

and thus obtain the equation system

(1)
$$\beta^q a_0 b_0^q + \beta^q \alpha^q a_1 b_1 = \alpha^q a_0^q b_0 + a_2^q b_2^q$$
,

(2)
$$\beta^q a_1 b_2^{q^2} + \beta^q \alpha^{q^2} a_2 b_0^q = \alpha^{q^2} a_1^q b_2^q + a_0^q b_1^{q^2}$$
,

(3)
$$\beta^q a_2 b_1 + \beta^q \alpha a_0 b_2^{q^2} = \alpha a_2^q b_1^{q^2} + a_1^q b_0$$
,

(4)
$$\beta^q a_0 b_1 = a_2^q b_0$$
,

(5)
$$\beta^q a_1 b_0^q = a_0^q b_2^q$$
,

(6)
$$\beta^q a_2 b_2^{q^2} = a_1^q b_1^{q^2}$$
.

Sketch of the Proof (Continued)

When we examine this system in each one of the cases

- Case 1: $a_0 = 0$ and $a_1 = 0$,
- Case 2: $a_0 \neq 0$ and $a_1 = 0$,
- Case 3: $a_0 = 0$ and $a_1 \neq 0$,
- Case 4: $a_0 \neq 0$ and $a_1 \neq 0$

Sketch of the Proof (Continued)

we will obtain that

- A(T) = 0 (i.e. it is not permutation)
- or B(T) = 0 (i.e. it is not permutation)
- or $Norm_{q^3/q}(\alpha) = 1$
- or $Norm_{q^3/q}(\beta) = 1$
- ullet or $\mathit{Norm}_{q^3/q}(lpha) = \mathit{Norm}_{q^3/q}(eta)$

i.e. some contradiction at the end of each case.

Sketch of the Proof (Continued)

For example, in Case 4 (i.e. for $a_0 \neq 0$ and $a_1 \neq 0$) we have

- If $b_1 = 0$: By (4) we have $a_2 = 0$ or $b_0 = 0$.
 - If $b_0 = 0$ then $b_2 = 0$ by (5), that is B(T) = 0.
 - If $b_0 \neq 0$ then $a_2 = 0$ by (4) and then $b_2 \neq 0$ by (5). It implies $Norm_{\sigma^3/g}(\alpha) = Norm_{\sigma^3/g}(\beta)$ by (1).
- If $b_1 \neq 0$: (4) implies $a_2 \neq 0$ and $b_0 \neq 0$. Also, (6) implies $b_2 \neq 0$. Then, using (4,5,6) and some arithmetic manipulations we obtain $Norm_{\sigma^3/\sigma}(\beta) = 1$.

Therefore, they are not equivalent when

$$Norm_{q^3/q}(\alpha) \neq Norm_{q^3/q}(\beta).$$

Corollary

When n = m = 3, there exist at least q - 1 distinct (i.e. mutually nonequivalent) linear MRD codes with the minimum distance 2 for all prime power q.

Example

 If q = 2 then we can produce only Gabidulin ones. Actually there is no non-Gabidulin linear MRD ones (easily provable computationally).

Example (Continued)

• If q=3 there is at least one non-Gabidulin MRD code $\mathcal{C}\subseteq\mathbb{F}_3^{3\times 3}$ with $d(\mathcal{C})=2$. And a sample of it corresponds to

$$\{xT + yT^q + 2y^{q^2}T^{q^2} : x, y \in \mathbb{F}_{q^3}\} \subseteq \mathbb{F}_{q^3}[T]$$

where q=3. In that way, we have also given a solution to our motivative problem^a. Remark that they computationally proved there is not another non-Gabidulin linear MRD class.

^aJ. Cruz, M. Kiermaier, A. Wassermann and W. Willems, *Algebraic structures of MRD codes*, preprint.

Finally...

Thank you very much.

Any questions?