New Lower Bounds for Constant Dimension Subspace Codes

Patric R. J. Östergård

Department of Communications and Networking Aalto University School of Electrical Engineering P.O. Box 13000, 00076 Aalto, Finland E-mail: patric.ostergard@aalto.fi

Joint work with Michael Braun and Alfred Wassermann.

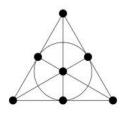
Supported in part by the Academy of Finland and COST Action 1104.

The Other Authors

Block Designs

t-(v, k, λ) (packing, covering) design A collection of k-subsets, called blocks, of a v-set of points, such that each t-subset of points is contained in exactly (at most, at least) λ blocks.

Example. The Fano plane, a 2-(7,3,1) design.



q-Analogs of Sets

Jacques Tits (1957): Sets are vector spaces over the finite field \mathbb{F}_q in the limit as $q \to 1$.

q o 1	<i>q</i> -analog	
set	vector space	
subset	vector subspace	
size (of set)	dimension (of space)	
complement set	dual space	

Based on this, we can define q-analogs of block designs.

q-Analogs of Block Designs

q-analog of t- (v, k, λ) (packing, covering) design A collection C of k-dimensional subspaces of a v-dimensional space V over \mathbb{F}_q , such that each t-dimensional subspace of V is contained in exactly (at most, at least) λ elements of C.

Finding q-analogs of t-(v, k, 1) designs, that is, q-Steiner systems, has turned out to be a challenge.

Application (Kötter & Kschischang, 2007)

A q-Steiner system can be used for error-correction in networks, under randomized network coding.

Theorem (Braun, Etzion, Östergård, Vardy & Wassermann)

There exist 2-(13, 3, 1) q-Steiner systems.

Why is This So Hard?

A necessary condition for the existence of a 2-(v, 3, 1) design over \mathbb{F}_a is that $v \equiv 1,3 \pmod{6}$. The q-analog of a Fano plane is the smallest nontrivial case. Consider \mathbb{F}_2 .

Number of 3-subspaces of a 7-space: $\begin{bmatrix} 7 \\ 3 \end{bmatrix} = 11811$. Number of 2-subspaces of a 7-space: $\begin{bmatrix} 7 \\ 2 \end{bmatrix} = 2667$. Number of 2-subspaces of a 3-space: $\begin{bmatrix} 3 \\ 2 \end{bmatrix} = 7$.

Number of 3-subspaces in a q-Fano plane: 2667/7 = 381.

q-Analogs of Packing Designs

With parameters for which q-Steiner systems don't exist (or have not been found) one may focus on the packing version of the problem.

Our Approach:

- Lower bounds for the size of *q*-packing designs by construction.
- Prescription of group of automorphisms (Kramer–Mesner).
- Construction by stochastic search.

Symmetries (1)

The available group G of symmetries is the general semilinear group $\Gamma L(n, q)$. If q is a prime, we have GL(n, q) (assumed in the sequel).

isomorphism An element $g \in G$ for which $S_2 = S_1^g$, where S_1 and S_2 are sets of subspaces.

automorphism An element $g \in G$ for which $S = S^g$, where S is a set of subspaces.

(full) automorphism group The group formed by the automorphisms under composition.

group of automorphisms Subgroup of the full automorphism group.

Symmetries (2)

```
"Nice" subgroups of GL(n, q):
```

View vectors in \mathbb{F}_q^n as elements of \mathbb{F}_{q^n} .

Singer cyclic group, of order
$$q^n - 1$$
: $\langle \sigma \rangle$

Galois group,
$$\operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)$$
, of order n : $\langle \phi \rangle$

```
\langle \sigma, \phi \rangle normalizer of Singer cyclic group, order n(q^n-1). \langle \sigma^i, \phi^j \rangle subgroups of the previous group (several groups if n and/or q^n-1 are not primes)
```

Constructing q-Packing Designs with $\lambda=1$ via Cliques

The prescribed group partitions the k-dimensional subspaces into orbits. Such orbits that fulfill the packing criterion (each t-dimensional subspace occurs at most once) are called admissible. Two different orbits whose union fulfills the packing criterion are called compatible.

Construct a weighted graph G = (V, E).

V: one vertex for each admissible orbit

E: one edge for each pair of compatible orbits

w(v), $v \in V$: length of orbit

Computational Problem: Find a maximum weight clique in G.

Stochastic Search for Maximum Weight Cliques

For small parameters, an exact solver can be used, like Cliquer: http://users.aalto.fi/pat/cliquer.html

Old stochastic methods Maintain a clique by adding and removing vertices, one at a time. Does *not* work well for weighted graphs.

Montemanni & Smith, 2009 Remove many vertices (random choice) and add vertices using an exact algorithm.

New stochastic method Remove many vertices (which are "close" in a packing sense) and add vertices using an exact algorithm.

Results

Table: Lower bounds for the size of q-analogs of t-(v, k, 1) designs

V	k	t	Old bound	New bound	Density	Group
8	3	2	1312	1326	0.860	$\langle \sigma^5 \rangle$
9	3	2	5694	5986	0.965	$\langle \sigma^7, \phi \rangle$
10	3	2	21483	23870	0.959	$\langle \sigma^3, \phi^2 \rangle$
11	3	2	92411	97526	0.978	$\langle \sigma, \phi \rangle \times 1$
13	3	2		1597245	1.000	$\langle \sigma, \phi \rangle$
8	4	3	4797	4801	0.741	$\langle \sigma^{17}, \phi \rangle$

Thank You!

And welcome to NORCOM in Finland, 13-15.6.2016:

