On q-analogs of 3- (v,k,λ_3) designs

Anamari Nakić

University of Zagreb

Joint work with Maarten De Boeck

ALCOMA 2015

Tactical decomposition of *t*-designs

Theorem (Krčadinac, Nakić, Pavčević, 2014)

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ be a t- (v, k, λ_t) design with tactical decomposition

$$\mathcal{P} = \mathcal{P}_1 \sqcup \cdots \sqcup \mathcal{P}_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup \mathcal{B}_n.$$

Then the coefficients of $\mathcal{R} = [
ho_{ij}]$ and $\mathcal{K} = [\kappa_{ij}]$ satisfy

$$\begin{split} &\sum_{j=1}^{n} \rho_{i_1 j} \kappa_{i_1 j}^{m_1 - 1} \kappa_{i_2 j}^{m_2} \cdots \kappa_{i_s j}^{m_s} = \\ &\sum_{\omega_1 = 1}^{m_1} \sum_{\omega_2 = 1}^{m_2} \cdots \sum_{\omega_s = 1}^{m_s} \lambda_{\omega_1 + \dots + \omega_s} {m_1 \brace \omega_1} (|\mathcal{P}_{i_1}| - 1)_{\omega_1 - 1} \prod_{j=2}^{s} {m_j \brace \omega_j} (|\mathcal{P}_{i_j}|)_{\omega_j}. \end{split}$$

Question: can this theorem be *q*-analogized?

Definition

A t- (v, k, λ_t) design is a finite incidence structure $(\mathcal{P}, \mathcal{B})$, where

- $ightharpoonup \mathcal{P}$ is a set of v elements called *points*,
- $ightharpoonup \mathcal{B}$ is a set of k-subsets of \mathcal{P} called *blocks*,
- every set of t points is contained in precisely λ_t blocks.
- $\qquad \qquad \textbf{$t$-$}(v,k,\lambda_t) \text{ design } \Rightarrow s$-$(v,k,\lambda_s)$ design with $s < t$ and $\lambda_s = \lambda_t \binom{v-s}{t-s}/\binom{k-s}{t-s}. }$

Figure: The Fano plane. 2-(7,3,1) design.

Designs over finite fields

Definition

A t- $(v, k, \lambda_t)_q$ design is finite set \mathcal{B} , where

- lacksquare \mathcal{B} is a set of k-subspaces of vector space \mathbb{F}_q^v called *blocks*,
- $lackbox{ every }t ext{-subspace of }\mathbb{F}_q^v ext{ is contained in precisely }\lambda_t ext{ blocks.}$

Question: does a q-analog of the Fano plane exist? (Braun, Kiermaier, Nakić, 2015)

Example: 3-(8,4,1) design

► Incidence matrix

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}	B_{12}	B_{13}	B_{14}
$\overline{p_1}$	1	0	1	0	0	1	1	0	0	0	1	1	0	1
p_2	0	1	1	0	1	0	0	0	1	0	1	0	1	1
p_3	1	0	0	1	1	0	0	1	0	0	1	1	1	0
p_4	0	1	0	1	0	1	0	0	0	1	0	1	1	1
p_5	1	0	1	0	0	1	0	1	1	1	0	0	1	0
p_6	0	1	1	0	1	0	1	1	0	1	0	1	0	0
p_7	1	0	0	1	1	0	1	0	1	1	0	0	0	1
p_8	0	1	0	1	0	1	1	1	1	0	1	0	0	0

Example: 3-(8,4,1) design

► Incidence matrix

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}	B_{12}	B_{13}	B_{14}
$\overline{p_1}$	1	0	1	0	0	1	1	0	0	0	1	1	0	1
p_2	0	1	1	0	1	0	0	0	1	0	1	0	1	1
p_3	1	0	0	1	1	0	0	1	0	0	1	1	1	0
p_4	0	1	0	1	0	1	0	0	0	1	0	1	1	1
$\overline{p_5}$	1	0	1	0	0	1	0	1	1	1	0	0	1	0
p_6	0	1	1	0	1	0	1	1	0	1	0	1	0	0
p_7	1	0	0	1	1	0	1	0	1	1	0	0	0	1
p_8	0	1	0	1	0	1	1	1	1	0	1	0	0	0

$$[\rho_{ij}] = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 1 & 2 & 3 & 1 \end{bmatrix} \qquad [\kappa_{ij}] = \begin{bmatrix} 2 & 2 & 1 & 3 \\ 2 & 2 & 3 & 1 \end{bmatrix}$$

Tactical decomposition of designs

Definition

A tactical decomposition of a design $(\mathcal{P},\mathcal{B})$ is any partition

$$\mathcal{P} = \mathcal{P}_1 \sqcup \cdots \sqcup \mathcal{P}_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup \mathcal{B}_n$$

with the property that there exist nonnegative integers ho_{ij} and κ_{ij} such that

- lacktriangle each point of \mathcal{P}_i lies in precisely ρ_{ij} blocks of \mathcal{B}_j ,
- ▶ and each block of \mathcal{B}_j contains precisely κ_{ij} points from \mathcal{P}_i .

Matrices $\mathcal{R} = [\rho_{ij}]$ and $\mathcal{K} = [\kappa_{ij}]$ are called *tactical decomposition matrices*.

▶ Orbits of $\mathcal P$ and orbits of $\mathcal B$ under an action of $G \leq \operatorname{Aut} \mathcal D$ form a tactical decomposition of $\mathcal D$.

Tactical decomposition of 2-designs

 $ightharpoonup (\mathcal{P},\mathcal{B})$ is a 2- (v,k,λ_2) design with tactical decomposition

$$\mathcal{P} = \mathcal{P}_1 \sqcup \cdots \sqcup \mathcal{P}_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup \mathcal{B}_n.$$

1.
$$\sum_{j=1}^{n} \rho_{ij} = \lambda_1, \quad \sum_{i=1}^{m} \kappa_{ij} = k$$

2.
$$\sum_{j=1}^{n} \rho_{lj} \kappa_{rj} = \begin{cases} \lambda_1 + (|\mathcal{P}_r| - 1) \cdot \lambda_2, & l = r, \\ |\mathcal{P}_r| \cdot \lambda_2, & l \neq r. \end{cases}$$

$[ho_{ij}]$	$ \mathcal{B}_1 $	 \mathcal{B}_n	$[\kappa_{ij}]$	\mathcal{B}_1	 \mathcal{B}_n
:			:		
\vdots \mathcal{P}_l \vdots	ρ_{l1}	 ρ_{ln}			
:			\mathcal{P}_r	K 1	 K
			<i>r r</i>	n_{T1}	 nrn
:			:		

Tactical decomposition of *t*-designs

Theorem (Krčadinac, Nakić, Pavčević, 2014)

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ be a t- (v, k, λ_t) design with tactical decomposition

$$\mathcal{P} = \mathcal{P}_1 \sqcup \cdots \sqcup \mathcal{P}_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup \mathcal{B}_n.$$

Then the coefficients of $\mathcal{R} = [
ho_{ij}]$ and $\mathcal{K} = [\kappa_{ij}]$ satisfy

$$\begin{split} &\sum_{j=1}^{n} \rho_{i_1 j} \kappa_{i_1 j}^{m_1 - 1} \kappa_{i_2 j}^{m_2} \cdots \kappa_{i_s j}^{m_s} = \\ &\sum_{\omega_1 = 1}^{m_1} \sum_{\omega_2 = 1}^{m_2} \cdots \sum_{\omega_s = 1}^{m_s} \lambda_{\omega_1 + \dots + \omega_s} {m_1 \brace \omega_1} (|\mathcal{P}_{i_1}| - 1)_{\omega_1 - 1} \prod_{j=2}^{s} {m_j \brace \omega_j} (|\mathcal{P}_{i_j}|)_{\omega_j}. \end{split}$$

Open problem: the existence of a 3-(16, 7, 5) design

Theorem (Nakić, 2015)

If a 3-(16,7,5) design exists, then it is either rigid or its full automorphism group is a 2-group.

Tactical decomposition of designs over finite fields

 $\blacktriangleright \ \Psi$ - the set of 1-spaces of \mathbb{F}_q^v

Definition

A tactical decomposition of a design $\mathcal B$ over finite field with parameters t- $(v,k,\lambda_t)_q$ is any partition

$$\Psi = \Psi_1 \sqcup \cdots \sqcup \Psi_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup \mathcal{B}_n$$

with the property that there exist nonnegative integers ho_{ij} and κ_{ij} such that

- each point of Ψ_i lies in precisely ρ_{ij} blocks of \mathcal{B}_j ,
- lacktriangle and each block of \mathcal{B}_j contains precisely κ_{ij} points from Ψ_i .

Matrices $\mathcal{R} = [\rho_{ij}]$ and $\mathcal{K} = [\kappa_{ij}]$ are called tactical decomposition matrices.

▶ Orbits of Ψ and orbits of \mathcal{B} under an action of $G \leq \operatorname{Aut} \mathcal{B}$ form a tactical decomposition of \mathcal{B} .

Tactical decomposition of designs over finite fields for t=2

- ► (Nakić, Pavčević, 2014)
- \triangleright \mathcal{B} is a 2- $(v, k, \lambda_2)_q$ design with tactical decomposition

$$\Psi = \Psi_1 \sqcup \cdots \sqcup \Psi_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup \mathcal{B}_n.$$

1.
$$\sum_{j=1}^{n} \rho_{ij} = \lambda_1, \quad \sum_{i=1}^{m} \kappa_{ij} = \begin{bmatrix} k \\ 1 \end{bmatrix}_q$$
2.
$$\sum_{j=1}^{n} \rho_{lj} \kappa_{rj} = \begin{cases} \lambda_1 + (|\Psi_r| - 1) \cdot \lambda_2, & l = r, \\ |\Psi_r| \cdot \lambda_2, & l \neq r. \end{cases}$$

$[ho_{ij}]$	$ \mathcal{B}_1 $	 \mathcal{B}_n	$[\kappa_{ij}]$	\mathcal{B}_1		\mathcal{B}_n
Ψ_1			Ψ_1			
:			:			
$egin{array}{c} dots \ \Psi_l \ dots \ dots \end{array}$	ρ_{l1}	 ρ_{ln}				
- <i>t</i>	F11	rin				
:			Ψ_r	κ_{r1}	• • •	κ_{rn}
:			:			
Ψ_m			Ψ_m	∢ □	▶ < □	→ < \(\bar{\bar{\bar{\bar{\bar{\bar{\bar{
Ψ_m			Ψ_m			

Tactical decomposition designs over finite fields for t=3

 $lackbox{ }\mathcal{B}$ is a $3\text{-}(v,k,\lambda_3)_q$ design with tactical decomposition

$$\Psi = \Psi_1 \sqcup \cdots \sqcup \Psi_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup \mathcal{B}_n.$$

$$\sum_{i=1}^{n} \rho_{lj} \kappa_{rj} \kappa_{sj} = \Lambda_{lrs}^{1} \cdot \lambda_{1} + \Lambda_{lrs}^{2} \cdot \lambda_{2} + \Lambda_{lrs}^{3} \cdot \lambda_{3}.$$

$$\Lambda^i_{lrs} = \#\{(P,R,S) : \text{ fixed } P \in \Psi_l, (R,S) \in \Psi_r \times \Psi_s, \dim\langle P,R,S\rangle = i\}, \qquad i = 1,2,3.$$

Tactical decomposition of 3-designs

 $ightharpoonup (\mathcal{P},\mathcal{B})$ is a 3- (v,k,λ_3) design with tactical decomposition

$$\mathcal{P} = \mathcal{P}_1 \sqcup \cdots \sqcup \mathcal{P}_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup \mathcal{B}_n.$$

$$\sum_{i=1}^{n} \rho_{lj} \kappa_{rj} \kappa_{sj} = \Lambda_{lrs}^{1} \cdot \lambda_{1} + \Lambda_{lrs}^{2} \cdot \lambda_{2} + \Lambda_{lrs}^{3} \cdot \lambda_{3}.$$

Theorem (Krčadinac, Nakić, Pavčević, 2014)

$$\begin{split} \sum_{j=1}^n \rho_{lj} \kappa_{rj} \kappa_{sj} &= \\ &= \left\{ \begin{array}{cccc} \lambda_1 &+& 3 \left(|\mathcal{P}_l| - 1 \right) \cdot \lambda_2 &+& \left(|\mathcal{P}_l| - 1 \right) \cdot \left(|\mathcal{P}_l| - 2 \right) \cdot \lambda_3, & \text{for } l = r = s, \\ && |\mathcal{P}_r| \cdot |\mathcal{P}_s| \cdot \lambda_3, & \text{for } l \neq r \neq s \neq l, \\ && |\mathcal{P}_s| \cdot \lambda_2 &+& \left(|\mathcal{P}_r| - 1 \right) \cdot |\mathcal{P}_s| \cdot \lambda_3, & \text{otherwise.} \\ \end{split} \right.$$

Theorem (De Boeck, Nakić)

$$\begin{split} &\sum_{j=1}^n \rho_{lj} \kappa_{rj} \kappa_{sj} = \\ &= \left\{ \begin{array}{rl} \lambda_1 + & \Lambda_{lrs}^2 \cdot \lambda_2 + & (|\Psi_r| \cdot |\Psi_s| - \Lambda_{lrs}^2 - 1) \cdot \lambda_3, & \text{for } l = r = s, \\ & & \Lambda_{lrs}^2 \cdot \lambda_2 + & (|\Psi_r| \cdot |\Psi_s| - \Lambda_{lrs}^2) \cdot \lambda_3, & \text{otherwise.} \end{array} \right. \end{split}$$

$$\Lambda^2_{lrs} = \#\{(P, R, S) : \text{ fixed } P \in \mathcal{P}_l, (R, S) \in \mathcal{P}_r \times \mathcal{P}_s, \#\{P, R, S\} = 2\}$$

Lemma

1.
$$\Lambda_{lrs}^2 = \Lambda_{lsr}^2$$

2.
$$|\Psi_l| \cdot \Lambda_{lrs}^2 = |\Psi_r| \cdot \Lambda_{rls}^2$$

3.
$$\sum_{s=1}^{m} \Lambda_{lrs}^{2} = \begin{cases} |\Psi_{r}| \cdot (q+1) + \frac{q^{v} - q^{2}}{q-1} - 1, & l = r, \\ |\Psi_{r}| \cdot (q+1), & l \neq r. \end{cases}$$

Lemma

The set of 2-subspaces of \mathbb{F}_q^v is a $2-(v,2,1)_q$ design \mathcal{L} . Group $G \leq P\Gamma L(\mathbb{F}_q^v)$ acts on \mathcal{L} inducing tactical decomposition

$$\Psi = \Psi_1 \sqcup \cdots \sqcup \Psi_m, \qquad \mathcal{L} = \mathcal{L}_1 \sqcup \cdots \sqcup \mathcal{L}_{\omega}$$

with tactical decomposition matrices $[
ho_{ij}^{\mathcal{L}}]$ and $[\kappa_{ij}^{\mathcal{L}}]$. Then

$$\Lambda_{lrs}^2 = \left\{ \begin{array}{ll} \sum_{j=1}^{\omega} \rho_{lj}^{\mathcal{L}} \kappa_{rj}^{\mathcal{L}} \kappa_{sj}^{\mathcal{L}} - \lambda_1, & \text{ for } l=r=s, \\ \sum_{j=1}^{\omega} \rho_{lj}^{\mathcal{L}} \kappa_{rj}^{\mathcal{L}} \kappa_{sj}^{\mathcal{L}}, & \text{ otherwise.} \end{array} \right.$$

Thank you for your attention!