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Tactical decomposition of t-designs

Theorem (Kr&adinac, Naki¢, Paveevi¢, 2014)
Let D = (P,

(P,B) be at-(v,k, A\t) design with tactical decomposition
P=P1U---UPm, B=BiU---UBy.
Then the coefficients of R = [p;;] and IC = [k;;] satisfy
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Question: can this theorem be ¢-analogized?




Designs

Definition

A t-(v, k, A\¢) design is a finite incidence structure (P, ), where
> P is a set of v elements called points,
» B is a set of k-subsets of P called blocks,

> every set of ¢ points is contained in precisely A+ blocks.

> t-(v,k, \) design = s-(v, k, \s) design with s < t and As = A\ (U2%)/(572).

Figure: The Fano plane. 2-(7,3, 1) design.



Designs over finite fields

Definition
A t-(v, k, A¢)q design is finite set B, where
> Bis a set of k-subspaces of vector space Fy called blocks,

> every t-subspace of Fy is contained in precisely A+ blocks.

> t-(v, k, At)q design = s-(v, k, Xs)q design with s <t and As = \¢ [“t’:ss]q/[f:ss]q.

Question: does a g-analog of the Fano plane exist? (Braun, Kiermaier, Nakié, 2015) J




Example: 3-(8,4,1) design
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Example: 3-(8,4,1) design
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Tactical decomposition of designs

Definition
A tactical decomposition of a design (P, B) is any partition

P=PiU---UPm, B=B1U---UB,

with the property that there exist nonnegative integers p;; and x;; such that

» each point of P; lies in precisely p;; blocks of Bj,

» and each block of B; contains precisely x;; points from P;.

Matrices R = [p;;] and IC = [k;;] are called tactical decomposition matrices.

» Orbits of P and orbits of B under an action of G < Aut D form a tactical
decomposition of D.



Tactical decomposition of 2-designs

> (P,B) is a 2-(v, k, A2) design with tactical decomposition

P=PiU---UPm, B=BiU---UBy.
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Tactical decomposition of t-designs

Theorem (Kr&adinac, Naki¢, Paveevi¢, 2014)
Let D = (P,B) be a t-(v,k, \¢) design with tactical decomposition

P=P1U---UPm, B=B1U---UDB,.

Then the coefficients of R = [p;;] and IC = [k;;] satisfy
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Open problem: the existence of a 3-(16,7,5) design

Theorem (Naki¢, 2015)
2-group.

If a 3-(16,7,5) design exists, then it is either rigid or its full automorphism group is a
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Tactical decomposition of designs over finite fields

> W - the set of 1-spaces of Fj

Definition
A tactical decomposition of a design B over finite field with parameters t-(v, k, A\t)q is

any partition
U=Uyl---U¥y,, B=BU---UB,

with the property that there exist nonnegative integers p;; and x;; such that

» each point of W; lies in precisely p;; blocks of B,

» and each block of B; contains precisely x;; points from ;.

Matrices R = [p;;] and IC = [k;;] are called tactical decomposition matrices.

» Orbits of ¥ and orbits of B under an action of G < Aut B form a tactical
decomposition of B.
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Tactical decomposition of designs over finite fields for ¢t = 2

> (Naki¢, Pavievi¢, 2014)
> Bis a 2-(v, k, A2)q design with tactical decomposition

V=0, U--UT,,, B=BU- - UBny.
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Tactical decomposition designs over finite fields for t = 3

> Bis a 3-(v, k, A3)q design with tactical decomposition

U=UU.--- UV, B=BU---UB,.

n
ZpleT‘jnSj = Allrs “A1+ Alzrs ‘A2 + A?rs - A3
j=1

v, U, W

7
Alrs

=#{(P,R,S) : fixed P € ¥, (R,S) € U, x¥,,dim(P,R,S) =i}, i=1,2,3.

13/18



Tactical decomposition of 3-designs

> (P,B) is a 3-(v, k, A3) design with tactical decomposition

P=PiU---UPm, B=BiU---UBy.

n
ZpljnTjnsj = Allrs SALF Alzrs ‘A2 + A?rs - A3.
Jj=1

Theorem (Kr&adinac, Naki¢, Pavevi¢, 2014)

Zpljﬁrjﬁsj =
j=1
Mo+ 3(Pil—1)-x2 + (Pil—1)-(P] —2)- A3, forl =71 =3
= [Pr| - |Ps| - A3, forl #r#38#1,
[Ps|- A2+ (I1Pr| = 1) - |Ps| - A3, otherwise.
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Tactical decomposition of designs over finite fields for t = 3

Theorem (De Boeck, Naki¢)

Zpljﬁrj/isj =
Jj=1
A+ Al2rs'>‘2+ (|\I’7~|~|\I’s|—Al2TS—1)-)\3, forl =r =s,
A7 do+ (U] |Ws| = A2 ) - A3, otherwise.
v,

v, Vs

A? =#{(P,R,S) : fixed P € Py, (R,S) € Pr x Ps,#{P,R,S} = 2}

[m]

=
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Some results regarding parameter A?

lrs
Lemma
2 A2
1. Alrs - Alsr
2. ¥y - A2

Irs — |\IIT| : A?‘l
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Some results regarding parameter A7

Lemma

The set of 2-subspaces of Fy is a 2 — (v,2,1)q design L. Group G < PTL(Fy) acts

on L inducing tactical decomposition

U=Uyl - -UW,,, L=LiU---UL,

with tactical decomposition matrices [pfj} and [nfj] Then

2 j=1
Alrs

forl =r=s,

otherwise.
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Thank you for your attention!
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