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Orthogonal arrays

Strength t = 2; v = 3 symbols; k = 4 columns; 23 rows
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Definition: Orthogonal Array

An orthogonal array of strength t, k columns, v symbols and index
λ denoted by OAλ(t, k, v), is an λvt × k array with symbols from
{0, 1, . . . , v− 1} such that in every t×N subarray, every t-tuple of
{0, 1, . . . , v − 1}t appears in exactly λ rows.
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Covering arrays

Strength t = 3; v = 2 symbols; k = 10 columns; N = 13 rows

if it contains the minimum possible number of rows. Various authors transpose the array in
the definition, and of course this is a matter of personal preference. In our discussions here,
we employ the N × k format, but occasionally construct the tranposed covering array.

Here is an example of a covering array of strength three with ten factors having two levels
each. It has N = 13 rows.

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0
1 1 0 1 0 0 1 0 1 0
0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1 0 1

This combinatorial object is fundamental in developing interaction tests when all factors
have an equal number of levels. However, systems are typically not composed of components
(factors) that each have exactly the same number of parameters (levels). To remove this
limitation of covering arrays, the mixed-level covering array can be used.

A mixed level covering array MCAλ(N ; t, k, (v1, v2, . . . , vk)) is an N × k array. Let
{i1, . . . , it} ⊆ {1, . . . , k}, and consider the subarray of size N×t obtained by selecting columns
i1, . . . , it of the MCA. There are

∏t
i=1 vi distinct t-tuples that could appear as rows, and an

MCA requires that each appear at least once. We use the notation CAN(t, k, (v1, v2, . . . , vk))
to denote the smallest N for which such a mixed covering array exists.

An early investigation of covering arrays appears implicitly in Marczewski [84]. Rényi
[105] determined sizes of covering arrays for the case t = v = 2 when N is even. Kleitman
and Spencer [73] and Katona [71] independently determined covering array numbers for all
N when t = v = 2. They showed that N grows as follows:

k =

(
N − 1

$N
2
%

)

For large k, N grows logarithmically. The construction is straightforward. Form a matrix
in which the columns consist of all distinct binary N -tuples of weight $N

2
% that have a 0 in

the first position. In 1990 Gargano, Körner and Vaccaro [58] gave a probabilistic bound
when t = 2 and v > 2:

N =
v

2
logk(1 + o(1))

Now we explore a dual formulation. Let C be an N×k covering array. Suppose that rows
are indexed by a set R of size N . Then each column can be viewed as a partition of R into

2

Definition: Covering Array

A covering array of strength t, k factors, v symbols, index λ and
size N , denoted by CAλ(N ; t, k, v), is an N × k array with
symbols from {0, 1, . . . , v − 1} such that in every t×N subarray,
every t-tuple of {0, 1, . . . , v − 1}t appears in at least λ rows.

Variable Strength Covering Arrays Lucia Moura



Covering arrays

Strength t = 3; v = 2 symbols; k = 10 columns; N = 13 rows

Definition: Covering Array

A covering array of strength t, k factors, v symbols, index λ and
size N , denoted by CAλ(N ; t, k, v), is an N × k array with
symbols from {0, 1, . . . , v − 1} such that in every t×N subarray,
every t-tuple of {0, 1, . . . , v − 1}t appears in at least λ rows.
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Covering arrays generalize orthogonal arrays

We are interested in the covering array number

CAN(t, k, v) = min{N : CA(N ; t, k, v) exists}.

An obvious lower bound: CAN(t, k, v) ≥ vt.

CAN(t, k, v) = vt if and only if there exists an OA1(t, k, v).

For t = 2, if k > v + 1, CAN(2, k, v) > v2.

For t = 3, if k > v + 2, CAN(3, k, v) > v3.

Indeed, we know that for fixed v and t, letting k →∞,

CAN(t, k, v) = O(log k)
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Covering Arrays: constructions and bounds

CAN(t, k, v) = min{N : CA(N ; t, k, v) exists}
Known asymptotic bounds on the covering array number:

As k →∞, CAN(2, k, v) = v
2 log k(1 + o(1)).

(Gargano, Korner and Vaccaro 1994)

CAN(t, k, v) ≤ gt(t− 1) ln k(1 + o(1))
(Godbole, Skipper and Sunley 1996)

For the finite case, we use specific constructions:

direct constructions (algebraic, computer searches) - base
ingredients.

indirect constructions (recursive) - build “larger” arrays based
on smaller ingredients.

Records of best upper bounds: Colbourn’s CA tables (online).
Nice survey:
Colbourn (2004) ”Combinatorial aspects of covering arrays”.
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CAs: applications in software and hardware testing
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CAs: generalizations useful for applications

Mixed alphabets: each column may have different alphabet
sizes.

Moura, Stardom, Stevens, Williams (2003)
Colbourn, Martirosyan, Mullen, Shasha, Sherwood, Yucas
(2005)

Variable strength: different types of strength are required
among different factors (hypergraph on columns)

Cheng, Dumitrescu, Schroeder (2003)
Meagher and Stevens (2005),
Meagher, Moura and Zekaoui (2007)
Cheng (2007)
Raaphorst, Moura, Stevens (2012).
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Variable Strength Covering Arrays
(Covering arrays on Hypergraphs)

Definition

Let ∆ be an ASC over {0, . . . , k − 1} with set of facets Λ, and let
t = rank(∆).
A V CAλ(N ; Λ, g) variable strength covering array, where
λ = (λ1, . . . , λt), is an N × k array over {0, . . . , g − 1} with
columns 0, . . . , k − 1 such that if B = {b0, . . . , bs−1} ∈ Λ, then B
is λs-covered. When λi = 1 for all i ∈ {|B| : B ∈ Λ}, the
parameter λ is frequently omitted. We take V CANλ(Λ, g) to be
the smallest N such that a V CAλ(N ; Λ, g) exists.

We take λ = 1.
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Variable Strength Covering Array: example

A V CA(27; Λ, 359) for Λ = {{0, 1, 2, 3, 4} × {5}} ∪
“`{0,1,2,3,4}

3

´
\ {0, 2, 4}

”
:

f0 f1 f2 f3 f4 f5 f0 f1 f2 f3 f4 f5
0 0 0 2 1 0 2 0 0 1 2 5
0 0 1 0 2 1 2 0 1 2 0 3
0 0 2 1 0 2 2 0 2 0 1 7
0 1 0 1 1 3 2 1 0 0 2 8
0 1 1 2 2 4 2 1 1 1 0 6
0 1 2 0 0 5 2 1 2 2 1 1
0 2 0 0 1 6 2 2 0 2 2 2
0 2 1 1 2 7 2 2 1 0 0 0
0 2 2 2 0 8 2 2 2 1 1 4
1 0 0 0 0 4 1 2 0 1 0 1
1 0 1 1 1 8 1 2 1 2 1 5
1 0 2 2 2 6 1 2 2 0 2 3
1 1 0 2 0 7 1 1 2 1 2 0
1 1 1 0 1 2
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Application example

AND

NAND

AND
NOT

XNOR

XOR

a

b

c

d

e

x

y

z

a b

c

d

e
x

y z

T# a b c d e

1 0 0 0 0 0
2 0 1 0 0 1
3 1 0 0 1 0
4 1 1 0 1 1
5 0 0 1 0 0
6 0 1 1 0 1
7 1 0 1 1 0
8 1 1 1 1 1
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Constructions and bounds for VCA

Constructions for specific hypergraphs/ASC: hyper trees,

Construction with upper bound: density algorithm (greedy)

Upper bound from the probabilistic method (non-constructive)
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Density-based greedy algorithm

For t = 2 Cohen, Dalal, Fredman and Patton (1997) propose
a greedy algorithm with logarithmic guarantee on the size of
the array (basis for their AETG software). It uses O(log k)
steps but each step requires to solve an NP-complete problem
which they approximate with a heuristic. So we either
sacrifice the logarithmic guarantee or the polynomial time.

Colbourn, Cohen and Turban (2004) introduced the concept
of density and give a polynomial time algorithm with
logarithmic guarantee for t = 2.

Bryce and Coulbourn (2008) generalize this algorithm for
general t. (polytime; logarithmic guarantee)

Raaphorst, Moura and Stevens (2011) generalize this
algorithm for variable strength.

(polytime; logarithmic guarantee)
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Density algorithm: main idea

An intermediate step of the algorithm:

Close a factor, say f1, and calculate densities:

(example extracted from Bryce and Colbourn (2008))
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Density algorithm

Let T ← ∅.
while there are interactions over Λ which are uncovered in T do

Create a new row S = ∅
Let F ← {0, . . . , k − 1}.
while F 6= ∅ do

Pick any f ∈ F .
Choose σf ∈ {0, . . . , gf − 1} such that δf (S ∪ {(f, σf )}) is
maximized.
S ← S ∪ {(f, σf )}
F ← F \ {f}

end while
T ← T ∪ {S}

end while
return T
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Density concepts (SKIP DETAILS OR AUDIENCE DIES)

Let W ∈ Λ. Take E(S,W ) to be all possible interactions over W
that respect S (i.e. the extensions of S to W ), written:

E(S,W ) = {
“S

f∈φ(S)∩W {(f, σf )}
”S“S

f∈W\φ(S){(f, af )}
”

:

af ∈ {0, . . . , gf − 1} for all f ∈W \ φ(S)}.
Define r(S,W ) to be the number of interactions in E(S,W ) that
are not yet covered in some row, i.e. r(S,W ) =

∑
I∈E(S,W ) γ(I).

Definition

The density of a set W over an interaction S is the ratio of
uncovered interactions over W respecting S to the total number of
interactions over W respecting S:

δ(S,W ) =

∑
I∈E(S,W ) γ(I)

|E(S,W )| =
r(S,W )
|E(S,W )| =

r(S,W )∏
f∈W\φ(S) gf

. (1)
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(torture cont’d) (SKIP DETAILS OR SPEAKER DIES)

The interaction density of an interaction S is defined
δ(S) =

∑
W∈Λ δ(S,W ), which can be rewritten:

δ(S) =
∑

W∈Λ
f 6∈W

δ(S,W ) +
∑

W∈Λ
f∈W

δ(S,W ).

The factor density of f with respect to S is defined as follows:

δf (S) =
∑

W∈Λ
f∈W

δ(S,W ).

Proposition

For f and S, the factor density δf (S) is the average number of
uncovered interactions extending S across all choices of levels for
f , i.e.: δf (S) = 1

gf

∑
σ∈{0,...,gf−1} δf (S ∪ {(f, σ)}).
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Density algorithm logarithmic guarantee

Theorem

Let Λ be an ASC over k factors with g1, . . . , gk levels respectively.
Take g = max{gi : i ∈ {1, . . . , k}}, t = max{|W | : W ∈ Λ}, and
m = max{∏i∈W gi : W ∈ Λ}. Then the density algorithm returns
a VCA(N ; Λ, (g1, . . . , gk)) where:

N ≤ ln(m|Λ|)
ln m

m−1

≤ m ln(m|Λ|) ≤ gt(ln |Λ|+ t ln g)= O(log |Λ|)
(as k →∞, for bounded g, t)

Corollary

If Λ is the t-uniform complete hypergraph on k vertices, fixed g:

N ≤ ln
(
k
t

)
+ ln gt

ln gt

gt−1

≤ gt(ln
(
k

t

)
+ ln gt) = gtt ln k + o(1).
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Density algorithm experimental example

Hypergraph = Steiner triple system of order k

k # g CA(2, k, g) Nm NM CA(3, k, g)
7 1 2 6 8 8 12

3 12 31 31 40
5 29 143 143 180

9 1 2 7 10 10 15
3 15 35 35 45
5 38 154 154 225

13 2 2 8 12 13 22
3 17 40 40 78
5 38 171 171 225

15 80 2 8 13 14 24
3 19 41 43 90
5 45 178 180 365
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Probabilistic method bounds for variable strength arrays

Local Lemma bound for Steiner designs:

V CAN(S(t− 1, t, k), g) ≤ (t− 2)gt ln k +O(1).

The (constructive) density method bound gives:

V CAN(S(t− 1, t, k), g) ≤ (t− 1)gt ln k +O(1).

Theorem (Local Lemma bound for VCA over s-(k, t, λ) designs)

Let B be an s-(k, t, λ) design, and let d be an upper bound on the block
intersection count of B. Then:

V CAN(B, g) ≤ ln(d+ 1) + t ln g + 1

ln gt

gt−1

.

For fixed s, t, g, and λ, as k →∞, we have that:

V CAN(B, g) ≤ (s− 1)gt ln k +O(1).

The (constructive) upper bound for the density method, gives, as k →∞:

V CAN(B, g) ≤ sgt ln k +O(1).
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Comparison between the bounds: density method vs
probabilistic method

Hypergraph: k = 15, full strength 2 + strength 3 over 4 factors
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Thank you!
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