Variable Strength Covering Arrays

Lucia Moura

School of Electrical Engineering and Computer Science
University of Ottawa
lucia@eecs.uottawa.ca

ALCOMA 2015, Kloster Banz, March 2015

joint work with Sebastian Raaphorst and Brett Stevens

Orthogonal arrays

Strength t=2; v=3 symbols; k=4 columns; 2^3 rows

Definition: Orthogonal Array

An orthogonal array of strength t, k columns, v symbols and index λ denoted by $OA_{\lambda}(t,k,v)$, is an $\lambda v^t \times k$ array with symbols from $\{0,1,\ldots,v-1\}$ such that in every $t\times N$ subarray, every t-tuple of $\{0,1,\ldots,v-1\}^t$ appears in exactly λ rows.

Covering arrays

Strength $t=3;\ v=2$ symbols; k=10 columns; N=13 rows

0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	0	0	0	0	1
1	0	1	1	0	1	0	1	0	0
1	0	0	0	1	1	1	0	0	0
0	1	1	0	0	1	0	0	1	0
0	0	1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0	1	0
0	0	0	1	1	1	0	0	1	1
0	0	1	1	0	0	1	0	0	1
0	1	0	1	1	0	0	1	0	0
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	1	1	1	0	1

Definition: Covering Array

A covering array of strength t, k factors, v symbols, index λ and size N, denoted by $CA_{\lambda}(N;t,k,v)$, is an $N\times k$ array with symbols from $\{0,1,\ldots,v-1\}$ such that in every $t\times N$ subarray, every t-tuple of $\{0,1,\ldots,v-1\}^t$ appears in at least λ rows.

Covering arrays

Strength $t=3;\ v=2$ symbols; k=10 columns; N=13 rows

		-			-		-		
0	0	0	0	0	Ô	0	0	0	0
1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	0	0	0	0	1
1	0	1	1	0	1	0	1	0	0
1	0	0	0	1	1	1	0	0	0
0	1	1	0	0	1	0	0	1	0
0	0	1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0	1	0
0	0	0	1	1	1	0	0	1	1
0	0	1	1	0	0	1	0	0	1
0	1	0	1	1	0	0	1	0	0
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	1/	1	1/	0	1
_		-					-		

Definition: Covering Array

A covering array of strength t, k factors, v symbols, index λ and size N, denoted by $CA_{\lambda}(N;t,k,v)$, is an $N\times k$ array with symbols from $\{0,1,\ldots,v-1\}$ such that in every $t\times N$ subarray, every t-tuple of $\{0,1,\ldots,v-1\}^t$ appears in at least λ rows.

Covering arrays generalize orthogonal arrays

We are interested in the covering array number

$$CAN(t, k, v) = \min\{N : CA(N; t, k, v) \text{ exists}\}.$$

An obvious lower bound: $CAN(t, k, v) \ge v^t$.

 $CAN(t,k,v)=v^t$ if and only if there exists an $OA_1(t,k,v)$.

For
$$t = 2$$
, if $k > v + 1$, $CAN(2, k, v) > v^2$.

For
$$t = 3$$
, if $k > v + 2$, $CAN(3, k, v) > v^3$.

Indeed, we know that for fixed v and t, letting $k \to \infty$,

$$CAN(t, k, v) = O(\log k)$$

Covering Arrays: constructions and bounds

 $CAN(t, k, v) = \min\{N : CA(N; t, k, v) \text{ exists}\}$

Known asymptotic bounds on the covering array number:

- As $k \to \infty$, $CAN(2, k, v) = \frac{v}{2} \log k(1 + o(1))$. (Gargano, Korner and Vaccaro 1994)
- $CAN(t, k, v) \leq g^t(t-1) \ln k(1+o(1))$ (Godbole, Skipper and Sunley 1996)

For the finite case, we use specific **constructions**:

- direct constructions (algebraic, computer searches) base ingredients.
- indirect constructions (recursive) build "larger" arrays based on smaller ingredients.

Records of best upper bounds: Colbourn's CA tables (online).

Nice survey:

Colbourn (2004) "Combinatorial aspects of covering arrays"

CAs: applications in software and hardware testing

Component							
Web Browser	Printer						
	System	Type	Config				
Netscape	Windows	LAN	Local				
IE	Macintosh	PPP	Networked				
Mozilla	Linux	ISDN	Screen				

Table 1. Four Factors, Each With Three Values

Test	Browser	OS	Connection	Printer
1	Netscape	Windows	LAN	Local
2	Netscape	Linux	ISDN	Networked
3	Netscape	Macintosh	PPP	Screen
4	IE	Windows	ISDN	Screen
5	IE	Macintosh	LAN	Networked
6	IE	Linux	PPP	Local
7	Mozilla	Windows	PPP	Networked
8	Mozilla	Linux	LAN	Screen
9	Mozilla	Macintosh	ISDN	Local

Table 2. Test Suite Covering All Pairs from Table 1

CAs: generalizations useful for applications

- Mixed alphabets: each column may have different alphabet sizes.
 - Moura, Stardom, Stevens, Williams (2003)
 - Colbourn, Martirosyan, Mullen, Shasha, Sherwood, Yucas (2005)
- Variable strength: different types of strength are required among different factors (hypergraph on columns)
 - Cheng, Dumitrescu, Schroeder (2003)
 - Meagher and Stevens (2005),
 - Meagher, Moura and Zekaoui (2007)
 - Cheng (2007)
 - Raaphorst, Moura, Stevens (2012).

Variable Strength Covering Arrays (Covering arrays on Hypergraphs)

Definition

Let Δ be an ASC over $\{0,\ldots,k-1\}$ with set of facets Λ , and let $t=\mathrm{ran}k(\Delta)$.

A $VCA_{\lambda}(N;\Lambda,g)$ variable strength covering array, where $\lambda=(\lambda_1,\ldots,\lambda_t)$, is an $N\times k$ array over $\{0,\ldots,g-1\}$ with columns $0,\ldots,k-1$ such that if $B=\{b_0,\ldots,b_{s-1}\}\in\Lambda$, then B is λ_s -covered. When $\lambda_i=1$ for all $i\in\{|B|:B\in\Lambda\}$, the parameter λ is frequently omitted. We take $VCAN_{\lambda}(\Lambda,g)$ to be the smallest N such that a $VCA_{\lambda}(N;\Lambda,g)$ exists.

We take $\lambda = 1$.

Variable Strength Covering Array: example

A
$$VCA(27;\Lambda,3^59)$$
 for $\Lambda=\{\{0,1,2,3,4\}\times\{5\}\}\cup\left(\left(^{\{0,1,2,3,4\}}\right)\setminus\{0,2,4\}\right):$

f_0	f_1	f_2	f_3	f_4	f_5
0	0	0	2	1	0
0	0 0	1	0	2	1
0	0	2	1	0	2
0	1	0	1	1	3
0	1	1	2	2	4
0	1	2	0	0	5
0	2	0	0	1	6
0	2	1	1	2	7
0	2	2	2	0	8
1	0	0	0	0	4
1	0	1	1	1	8
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0 1 1 1 2 2 2 0 0 0	$egin{array}{cccc} f_2 & & & & & & & & & & & & & & & & & & &$	f_3 2 0 1 1 2 0 0 1 2 0 1 2 0 1 2 0 1 0 1	1 2 0 1 2 0 1 2 0 0 1 2 0	f_{5} 0 1 2 3 4 5 6 7 8 4 8 6 7 2
1	1	0	2	0	7
1	1	1	0	1	2

		('	-		
f_0	f_1	f_2	f_3	f_4	f_5
2	0	0	1	2	5
2	0	1	2	0	3
2	0	1 2 0	0	1	7
2 2 2 2 2 2 2 2 2 2 1 1	1	0	0	2	8
2	1	1	1	0	6
2	1	1 2 0	2	1	1
2	2	0	2	2	2
2	2	1	0	0	0
2	2	1 2	1	1	4
1	2	0	1	0	1
1	2 2 2 2 2	1	1 2	1	5
1		1 2 2	0	2	3
1	1	2	1	2	0

Application example

Constructions and bounds for VCA

- Constructions for specific hypergraphs/ASC: hyper trees,
- Construction with upper bound: density algorithm (greedy)
- Upper bound from the probabilistic method (non-constructive)

Density-based greedy algorithm

- For t=2 Cohen, Dalal, Fredman and Patton (1997) propose a greedy algorithm with **logarithmic guarantee** on the size of the array (basis for their AETG software). It uses $O(\log k)$ steps but each step requires to solve an NP-complete problem which they approximate with a heuristic. So we either sacrifice the logarithmic guarantee or the polynomial time.
- Colbourn, Cohen and Turban (2004) introduced the concept of density and give a **polynomial time** algorithm with **logarithmic guarantee** for t = 2.
- Bryce and Coulbourn (2008) generalize this algorithm for general t. (polytime; logarithmic guarantee)
- Raaphorst, Moura and Stevens (2011) generalize this algorithm for variable strength.

(polytime; logarithmic guarantee)

Density algorithm: main idea

An intermediate step of the algorithm:

	f_0	f_1	f_2	f_3	f_4
Test 1	0	2	4	6	8
Test 2	1	?	?	6	?

Close a factor, say f_1 , and calculate densities:

Density for f_1 $\frac{(4+5)}{2} = 4.5$

Choose a level for factor f_1 . As shown above, $f_1 = 3$ has a larger density than that of $f_1 = 2$.

	f_0	f_1	f_2	f_3	f_4
Test 1	0	2	4	6	8
Test 2	1	3	?	6	?

(example extracted from Bryce and Colbourn (2008))

Density algorithm

```
Let \mathcal{T} \leftarrow \emptyset.
while there are interactions over \Lambda which are uncovered in \mathcal{T} do
   Create a new row S = \emptyset
   Let F \leftarrow \{0, ..., k-1\}.
   while F \neq \emptyset do
       Pick any f \in F.
       Choose \sigma_f \in \{0, \dots, g_f - 1\} such that \delta_f(S \cup \{(f, \sigma_f)\}) is
       maximized.
       S \leftarrow S \cup \{(f, \sigma_f)\}
       F \leftarrow F \setminus \{f\}
   end while
   \mathcal{T} \leftarrow \mathcal{T} \cup \{S\}
end while
return \mathcal{T}
```

Density concepts (SKIP DETAILS OR AUDIENCE DIES)

Let $W\in \Lambda$. Take E(S,W) to be all possible interactions over W that respect S (i.e. the extensions of S to W), written:

$$\begin{split} E(S,W) &= \{ \left(\bigcup_{f \in \phi(S) \cap W} \{ (f,\sigma_f) \} \right) \bigcup \left(\bigcup_{f \in W \setminus \phi(S)} \{ (f,a_f) \} \right) : \\ a_f &\in \{0,\dots,g_f-1\} \text{ for all } f \in W \setminus \phi(S) \}. \end{split}$$

Define r(S, W) to be the number of interactions in E(S, W) that are not yet covered in some row, i.e. $r(S, W) = \sum_{I \in E(S, W)} \gamma(I)$.

Definition

The density of a set W over an interaction S is the ratio of uncovered interactions over W respecting S to the total number of interactions over W respecting S:

$$\delta(S, W) = \frac{\sum_{I \in E(S, W)} \gamma(I)}{|E(S, W)|} = \frac{r(S, W)}{|E(S, W)|} = \frac{r(S, W)}{\prod_{f \in W \setminus \phi(S)} g_f}.$$
 (1)

(torture cont'd) (SKIP DETAILS OR SPEAKER DIES)

The interaction density of an interaction S is defined $\delta(S) = \sum_{W \in \Lambda} \delta(S, W)$, which can be rewritten:

$$\delta(S) = \sum_{\substack{W \in \Lambda \\ f \not\in W}} \delta(S, W) + \sum_{\substack{W \in \Lambda \\ f \in W}} \delta(S, W).$$

The factor density of f with respect to S is defined as follows:

$$\delta_f(S) = \sum_{\substack{W \in \Lambda \\ f \in W}} \delta(S, W).$$

Proposition

For f and S, the factor density $\delta_f(S)$ is the average number of uncovered interactions extending S across all choices of levels for f, i.e.: $\delta_f(S) = \frac{1}{q_f} \sum_{\sigma \in \{0,\dots,g_f-1\}} \delta_f(S \cup \{(f,\sigma)\}).$

Density algorithm logarithmic guarantee

Theorem

Let Λ be an ASC over k factors with g_1,\ldots,g_k levels respectively. Take $g=\max\{g_i:i\in\{1,\ldots,k\}\}$, $t=\max\{|W|:W\in\Lambda\}$, and $m=\max\{\prod_{i\in W}g_i:W\in\Lambda\}$. Then the density algorithm returns a VCA $(N;\Lambda,(g_1,\ldots,g_k))$ where:

$$N \leq rac{\ln(m|\Lambda|)}{\ln rac{m}{m-1}} \leq m \ln(m|\Lambda|) \leq g^t (\ln |\Lambda| + t \ln g) = O(\log |\Lambda|)$$
 (as $k o \infty$, for bounded g, t)

Corollary

If Λ is the t-uniform complete hypergraph on k vertices, fixed g:

$$N \le \frac{\ln \binom{k}{t} + \ln g^t}{\ln \frac{g^t}{g^t - 1}} \le g^t (\ln \binom{k}{t} + \ln g^t) = g^t t \ln k + o(1).$$

Density algorithm experimental example

 ${\sf Hypergraph} = {\sf Steiner} \ {\sf triple} \ {\sf system} \ {\sf of} \ {\sf order} \ k$

k	#	g	CA(2, k, g)	N_m	N_M	CA(3, k, g)
7	1	2	6	8	8	12
		3	12	31	31	40
		5	29	143	143	180
9	1	2	7	10	10	15
		3	15	35	35	45
		5	38	154	154	225
13	2	2	8	12	13	22
		3	17	40	40	78
		5	38	171	171	225
15	80	2	8	13	14	24
		3	19	41	43	90
		5	45	178	180	365

Probabilistic method bounds for variable strength arrays

Local Lemma bound for Steiner designs:

$$VCAN(S(t-1,t,k),g) \le (t-2)g^t \ln k + O(1).$$

The (constructive) density method bound gives:

$$VCAN(S(t-1,t,k),g) \le (t-1)g^t \ln k + O(1).$$

Theorem (Local Lemma bound for VCA over s- (k, t, λ) designs)

Let \mathcal{B} be an s- (k, t, λ) design, and let d be an upper bound on the block intersection count of \mathcal{B} . Then:

$$VCAN(\mathcal{B}, g) \le \frac{\ln(d+1) + t \ln g + 1}{\ln \frac{g^t}{g^t - 1}}.$$

For fixed s, t, g, and λ , as $k \to \infty$, we have that:

$$VCAN(\mathcal{B}, g) \le (s - 1)g^t \ln k + O(1).$$

The (constructive) upper bound for the density method, gives, as $k \to \infty$:

$$VCAN(\mathcal{B},g) \leq sg^t \ln k + O(1)$$
.

Comparison between the bounds: density method vs probabilistic method

Hypergraph: k=15, full strength 2 + strength 3 over 4 factors

Thank you!