ON THE EXISTENCE SPREADS IN PROJECTIVE HJELMSLEV GEOMETRIES Ivan Landjev **New Bulgarian University** ## 1. Modules over finite chain rings **Definition**. A ring (associative, $1 \neq 0$, ring homomorphisms preserving 1) is called a **left (right) chain ring** if the lattice of its left (right) ideals forms a chain. $$R > \operatorname{rad} R > (\operatorname{rad} R)^2 > \dots > (\operatorname{rad} R)^{m-1} > (\operatorname{rad} R)^m = (0).$$ - m the **length** of R; - \mathbb{F}_q the **residue field** of R, $q=p^s$; - p^r the characteristic of R. **Theorem.** Let R be a finite chain ring of nilpotency index m. For any finite module $_RM$ there exists a uniquely determined partition $$\lambda = (\lambda_1, \dots, \lambda_k) \vdash \log_q |M|,$$ $0 \le \lambda_i \le m$, such that $$_{R}M \cong R/(\operatorname{rad} R)^{\lambda_{1}} \oplus \ldots \oplus R/(\operatorname{rad} R)^{\lambda_{k}}.$$ The partition λ is called the **shape** of $_RM$. The number k is called the **rank** of $_RM$. # 2. Projective Hjelmslev Geometries - $M = {}_RR^n$; $M^* := M \setminus \theta M$; $\theta \in \operatorname{rad} R \setminus (\operatorname{rad} R)^2$ - $\bullet \ \mathcal{P} = \{Rx \mid x \in M^*\};$ - $\mathcal{L} = \{Rx + Ry \mid x, y \text{ linearly independent}\};$ - $I \subseteq \mathcal{P} \times \mathcal{L}$ incidence relation; - \bigcirc_i neighbour relation: $$X \bigcirc_i Y$$ iff $X = Y + \theta^i R^n$, for $i = 1, \ldots, m$. **Definition**. The incidence structure $\Pi = (\mathcal{P}, \mathcal{L}, I)$ with neighbour relations \bigcirc_i is called the (left) projective Hjelmslev geometry over the chain ring R. **Definition**. A set of points H in the projective Hjelmslev space Π is called a **Hjelmlsev subspace** if for any two points $x, y \in H$ there is at least one line incident with both of them which is entirely contained in H. **Definition**. A set of points H in the projective Hjelmlsev space Π is called a subspace if it is the intersection of Hjelmlsev subspaces. Hjelmslev subspaces \longrightarrow free submodules of ${}_RR^n$ subspaces \longrightarrow submodules of ${}_RR^n$ with at least one free submodule subspace of type $\lambda \longrightarrow$ submodule of type λ # $\mathrm{PHG}(\mathbb{Z}_9^3)$ - S_0 a Hjelmslev subspace with $\dim S_0 = k 1$ in $PHG({}_RR^n)$; - $\mathfrak{P} = \{ \mathcal{S} \cap [X]^{(m-i)} \mid X \bigcirc_i \mathcal{S}_0, \mathcal{S} \in [\mathcal{S}_0]^{(i)} \};$ - \mathfrak{L} the set of all lines incident with at least one "point" from $[\mathcal{S}_0]$; - $\bullet \mathfrak{I} \subseteq \mathfrak{P} \times \mathfrak{L}$ **Theorem.** The incidence structure $(\mathfrak{P},\mathfrak{L},\mathfrak{I})$ can be imbedded isomorphically into $\mathrm{PHG}(_{R/\operatorname{rad}^{m-i}R}(R/\operatorname{rad}^{m-i}R)^n)$. The missing part contains the points of an (n-k-1)-dimensional Hjelmslev space over $R/\operatorname{rad}^{m-i}R$. In particular, for i=m-1, $(\mathfrak{P},\mathfrak{L},\mathfrak{I})$ can be imbedded isomorphically into PG(n-1,q). # A Neighbour class of lines in $PHG(\mathbb{Z}_8^3)$ **Theorem**. Let $_RM$ be a module of shape $\lambda=(\lambda_1,\ldots,\lambda_n)$. For every sequence $\mu=(\mu_1,\ldots,\mu_n),\ \mu_1\geq\ldots\geq\mu_n\geq0$, satisfying $\mu\leq\lambda$ the module $_RM$ has exactly $$\begin{bmatrix} \lambda \\ \mu \end{bmatrix}_{q^m} = \prod_{i=1}^m q^{\mu'_{i+1}(\lambda'_i - \mu'_i)} \cdot \begin{bmatrix} \lambda'_i - \mu'_{i+1} \\ \mu'_i - \mu'_{i+1} \end{bmatrix}_q$$ submodules of shape $\mu.$ In particular, the number of free rank s submodules of $_RM$ equals $$q^{s(\lambda'_1-s)+\ldots+s(\lambda'_{m-1}-s)}\cdot \begin{bmatrix} \lambda'_m \\ s \end{bmatrix}_q$$ Here $${n \brack k}_q = \frac{(q^n - 1) \dots (q^{n-k+1} - 1)}{(q^k - 1) \dots (q - 1)}.$$ are the Gaussian coefficients. ### 3. Spreads **Definition**. A k-spread of the projective Hjelmslev geometry $PHG(_RR^{n+1})$ is a set S of k-dimensional Hjelmslev subspaces such that every point is contained in exactly one subspace of S. **Theorem.** Let R be a chain ring with $|R| = q^m$, $R/\operatorname{rad} R \cong \mathbb{F}_q$. There exists a spread S of k-dimensional Hjelmslev subspaces of $\operatorname{PHG}(_RR^{n+1})$ if and only if k+1 divides n+1. Let $$\kappa = (\kappa_1, \dots, \kappa_n)$$ with $m = \kappa_1 \ge \kappa_2 \ge \dots \ge \kappa_n \ge 0$ **Definition.** A κ -spread of the projective Hjelmslev geometry $\operatorname{PHG}(R_R^n)$ is a set $\mathcal S$ of subspaces of type κ such that every point is contained in exactly one subspace of $\mathcal S$. **Theorem.** Let there exist a κ -spread in $\mathrm{PHG}({}_RR^n)$, where $R/\operatorname{rad} R\cong \mathbb{F}_q$, $|R|=q^m$, $\lambda=(\lambda_1,\ldots,\lambda_n)$ with $$\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n = a.$$ Then there exists a μ -spread with $\mu = (\mu_1, \dots, \mu_n)$, $\mu_i = \lambda_i - a$, in the geometry $PHG(_SS^n)$, where $S \cong R/\operatorname{rad}^{m-a}R$. Let $\kappa = (\kappa_1, \dots, \kappa_n)$, where $m = \kappa_1 \ge \kappa_2 \ge \dots \ge \kappa_n = 0$. **Theorem.** Let R be a finite chain ring and let $\Pi = \mathrm{PHG}(_RR^n)$. If there exists a κ -spread in Π then ${\kappa \brack 1}_{q^m}$ divides ${n \brack 1}_{q^m}$. Note: this necessary condition is not always sufficient. Take a chain ring R with length 2 and residue field \mathbb{F}_q . Take $$\kappa = (\underbrace{2, \dots, 2}_{n/2}, \underbrace{1, \dots, 1}_{n/2-1}, 0).$$ The number of points in a subspace of shape κ is $q^{n-2}\frac{q^{\frac{n}{2}}-1}{q-1}$ and divides the number of points in $PHG(_RR^n)$ which is $q^{n-1}\frac{q^n-1}{q-1}$. Theorem. Let R be a chain ring of nilpotency index 2. Let $\Pi = \mathrm{PHG}({}_RR^n)$. There exists no κ -spread of Π for $\kappa = (\underbrace{2,\ldots,2}_{n/2},\underbrace{1,\ldots,1}_{n/2},0)$. **Corollary.** There exists no κ -spread of $PHG(_RR^4)$ with $\kappa=(2,2,1,0)$. - $\Pi = \mathrm{PHG}(_RR^4)$, $|R| = q^2$, $R/\mathrm{rad}\,R \cong \mathbb{F}_q$ - S a subspace of shape (2, 2, 1, 0) - U an Hjelmslev subspace of shape (2, 2, 2, 0) - Observation: if $[x] \cap S \subseteq [x] \cap U$ for some point $x \in \mathcal{P}$ then $S \subseteq [U]$. More generally: Theorem. Let R be a chain ring of length m. Let $\Pi = \operatorname{PHG}({}_RR^n)$. There exists no κ -spread of Π for $\kappa = (\underbrace{m, \ldots, m}_{n/2}, \underbrace{m-1, \ldots, m-1}_{n/2-1}, 0)$. Theorem. Let R be a finite chain ring of length 2 and let $\Pi = \operatorname{PHG}(_RR^n)$ be the corresponding (left) projective Hjelmslev space. There exists no κ -spread of $\Pi = \operatorname{PHG}(_RR^n)$ with $\kappa = (\underbrace{2,\ldots,2}_{n/2},\underbrace{1,\ldots,1}_{n/2-a},\underbrace{0,\ldots,0}_{a})$, where $1 \leq a \leq \frac{n}{2}-1$. For chain rings of length 2 and dimension of the free part equal to n/2, we have: | Shape | Existence | |--|-----------| | $(\underbrace{2,\ldots,2},\underbrace{0,\ldots,0})$ | YES | | $(\underbrace{2,\ldots,2}_{n/2},1,\underbrace{0,\ldots,0}_{n/2})$ | NO | | $(\underbrace{2,\ldots,2}_{n/2},1,1\underbrace{0,\ldots,0}_{n/2-2})$ | NO | | $(2,\ldots,2,\underbrace{1,\ldots,1},0)$ | NO | | $(\underbrace{2,\ldots,2}_{n/2},\underbrace{1,\ldots,1}_{n/2})$ | YES | #### 4. Further non-existence results Does there exist a κ -spread for $\tau=(3,3,1,0)$, in $\mathrm{PHG}(_RR^4)$, where R is a chain ring with $|R|=q^3$, $R/\operatorname{rad} R\cong \mathbb{F}_q$? # of points in a subspace of shape $(3,3,1,0)=q^3(q+1)$ $$\#$$ of subspaces in the spread $=$ $\frac{q^6(q^3+q^2+q+1)}{q^3(q+1)}=q^5+q^3$. $[\pi]$: 1-neighbour class of planes. There exist three possibilities for the intersection of a subspace S of shape (3,3,1,0) with $[\pi]$: - (1) S is contained in $[\pi]$ and contained in a plane from $[\pi]$; - (2) S is contained in π but is not contained in a plane from π ; - (3) S is not contained in $[\pi]$. A=# of subspaces from the spread of type (1) or (2) B = # of subspaces from the spread of type (3) $$\begin{vmatrix} A & + & B & = q^5 + q^3 \\ q^3(q+1)A & + & q^3B & = q^6(q^3 + q^2 + q + 1) \end{vmatrix}$$ $A=q^3$, $B=q^5$ for every neighbour class of planes $[\pi]$ **Observation:** There are at least $q^3 - q + 1$ subspaces of type (1) and at most q-1 subspaces of type (2) in any class $[\pi]$. Count the number of pairs $(S, [\pi])$, where - $\diamond S$ is a subspace from the spread of type (2). - \diamond $[\pi]$ is a 1-neighbour class of planes containing π For each S there exist q choices for π . Therefore $$\#(S, [\pi]) = q^5 + q^3.$$ On the other hand, for each class $[\pi]$ there exist at most q-1 choices for S. Hence $$\#(S, [\pi]) \le (q^3 + q^2 + q + 1)(q - 1) = q^4 - 1,$$ a contradiction. More generally: Theorem. Let R be a chain ring of length $m \geq 3$. Let $\Pi = \mathrm{PHG}(_RR^n)$. There exists no κ -spread of Π for $\kappa = (\underbrace{m, \ldots, m}_{n/2}, \underbrace{m-2, \ldots, m-2}_{n/2-1}, 0)$. #### Open problem: Find a "nice" necessary and sufficient condition on κ for the existence κ -spread in $PHG(_RR^n)$.