ON THE EXISTENCE SPREADS IN PROJECTIVE HJELMSLEV GEOMETRIES

Ivan Landjev

New Bulgarian University

1. Modules over finite chain rings

Definition. A ring (associative, $1 \neq 0$, ring homomorphisms preserving 1) is called a **left (right) chain ring** if the lattice of its left (right) ideals forms a chain.

$$R > \operatorname{rad} R > (\operatorname{rad} R)^2 > \dots > (\operatorname{rad} R)^{m-1} > (\operatorname{rad} R)^m = (0).$$

- m the **length** of R;
- \mathbb{F}_q the **residue field** of R, $q=p^s$;
- p^r the characteristic of R.

Theorem. Let R be a finite chain ring of nilpotency index m. For any finite module $_RM$ there exists a uniquely determined partition

$$\lambda = (\lambda_1, \dots, \lambda_k) \vdash \log_q |M|,$$

 $0 \le \lambda_i \le m$, such that

$$_{R}M \cong R/(\operatorname{rad} R)^{\lambda_{1}} \oplus \ldots \oplus R/(\operatorname{rad} R)^{\lambda_{k}}.$$

The partition λ is called the **shape** of $_RM$.

The number k is called the **rank** of $_RM$.

2. Projective Hjelmslev Geometries

- $M = {}_RR^n$; $M^* := M \setminus \theta M$; $\theta \in \operatorname{rad} R \setminus (\operatorname{rad} R)^2$
- $\bullet \ \mathcal{P} = \{Rx \mid x \in M^*\};$
- $\mathcal{L} = \{Rx + Ry \mid x, y \text{ linearly independent}\};$
- $I \subseteq \mathcal{P} \times \mathcal{L}$ incidence relation;
- \bigcirc_i neighbour relation:

$$X \bigcirc_i Y$$
 iff $X = Y + \theta^i R^n$,

for $i = 1, \ldots, m$.

Definition. The incidence structure $\Pi = (\mathcal{P}, \mathcal{L}, I)$ with neighbour relations \bigcirc_i is called the (left) projective Hjelmslev geometry over the chain ring R.

Definition. A set of points H in the projective Hjelmslev space Π is called a **Hjelmlsev subspace** if for any two points $x, y \in H$ there is at least one line incident with both of them which is entirely contained in H.

Definition. A set of points H in the projective Hjelmlsev space Π is called a subspace if it is the intersection of Hjelmlsev subspaces.

Hjelmslev subspaces \longrightarrow free submodules of ${}_RR^n$

subspaces \longrightarrow submodules of ${}_RR^n$ with at least one free submodule

subspace of type $\lambda \longrightarrow$ submodule of type λ

$\mathrm{PHG}(\mathbb{Z}_9^3)$

- S_0 a Hjelmslev subspace with $\dim S_0 = k 1$ in $PHG({}_RR^n)$;
- $\mathfrak{P} = \{ \mathcal{S} \cap [X]^{(m-i)} \mid X \bigcirc_i \mathcal{S}_0, \mathcal{S} \in [\mathcal{S}_0]^{(i)} \};$
- \mathfrak{L} the set of all lines incident with at least one "point" from $[\mathcal{S}_0]$;
- $\bullet \mathfrak{I} \subseteq \mathfrak{P} \times \mathfrak{L}$

Theorem. The incidence structure $(\mathfrak{P},\mathfrak{L},\mathfrak{I})$ can be imbedded isomorphically into $\mathrm{PHG}(_{R/\operatorname{rad}^{m-i}R}(R/\operatorname{rad}^{m-i}R)^n)$. The missing part contains the points of an (n-k-1)-dimensional Hjelmslev space over $R/\operatorname{rad}^{m-i}R$.

In particular, for i=m-1, $(\mathfrak{P},\mathfrak{L},\mathfrak{I})$ can be imbedded isomorphically into PG(n-1,q).

A Neighbour class of lines in $PHG(\mathbb{Z}_8^3)$

Theorem. Let $_RM$ be a module of shape $\lambda=(\lambda_1,\ldots,\lambda_n)$. For every sequence $\mu=(\mu_1,\ldots,\mu_n),\ \mu_1\geq\ldots\geq\mu_n\geq0$, satisfying $\mu\leq\lambda$ the module $_RM$ has exactly

$$\begin{bmatrix} \lambda \\ \mu \end{bmatrix}_{q^m} = \prod_{i=1}^m q^{\mu'_{i+1}(\lambda'_i - \mu'_i)} \cdot \begin{bmatrix} \lambda'_i - \mu'_{i+1} \\ \mu'_i - \mu'_{i+1} \end{bmatrix}_q$$

submodules of shape $\mu.$ In particular, the number of free rank s submodules of $_RM$ equals

$$q^{s(\lambda'_1-s)+\ldots+s(\lambda'_{m-1}-s)}\cdot \begin{bmatrix} \lambda'_m \\ s \end{bmatrix}_q$$

Here

$${n \brack k}_q = \frac{(q^n - 1) \dots (q^{n-k+1} - 1)}{(q^k - 1) \dots (q - 1)}.$$

are the Gaussian coefficients.

3. Spreads

Definition. A k-spread of the projective Hjelmslev geometry $PHG(_RR^{n+1})$ is a set S of k-dimensional Hjelmslev subspaces such that every point is contained in exactly one subspace of S.

Theorem. Let R be a chain ring with $|R| = q^m$, $R/\operatorname{rad} R \cong \mathbb{F}_q$. There exists a spread S of k-dimensional Hjelmslev subspaces of $\operatorname{PHG}(_RR^{n+1})$ if and only if k+1 divides n+1.

Let
$$\kappa = (\kappa_1, \dots, \kappa_n)$$
 with $m = \kappa_1 \ge \kappa_2 \ge \dots \ge \kappa_n \ge 0$

Definition. A κ -spread of the projective Hjelmslev geometry $\operatorname{PHG}(R_R^n)$ is a set $\mathcal S$ of subspaces of type κ such that every point is contained in exactly one subspace of $\mathcal S$.

Theorem. Let there exist a κ -spread in $\mathrm{PHG}({}_RR^n)$, where $R/\operatorname{rad} R\cong \mathbb{F}_q$, $|R|=q^m$, $\lambda=(\lambda_1,\ldots,\lambda_n)$ with

$$\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n = a.$$

Then there exists a μ -spread with $\mu = (\mu_1, \dots, \mu_n)$, $\mu_i = \lambda_i - a$, in the geometry $PHG(_SS^n)$, where $S \cong R/\operatorname{rad}^{m-a}R$.

Let $\kappa = (\kappa_1, \dots, \kappa_n)$, where $m = \kappa_1 \ge \kappa_2 \ge \dots \ge \kappa_n = 0$.

Theorem. Let R be a finite chain ring and let $\Pi = \mathrm{PHG}(_RR^n)$. If there exists a κ -spread in Π then ${\kappa \brack 1}_{q^m}$ divides ${n \brack 1}_{q^m}$.

Note: this necessary condition is not always sufficient.

Take a chain ring R with length 2 and residue field \mathbb{F}_q .

Take
$$\kappa = (\underbrace{2, \dots, 2}_{n/2}, \underbrace{1, \dots, 1}_{n/2-1}, 0).$$

The number of points in a subspace of shape κ is $q^{n-2}\frac{q^{\frac{n}{2}}-1}{q-1}$ and divides the number of points in $PHG(_RR^n)$ which is $q^{n-1}\frac{q^n-1}{q-1}$.

Theorem. Let R be a chain ring of nilpotency index 2. Let $\Pi = \mathrm{PHG}({}_RR^n)$. There exists no κ -spread of Π for $\kappa = (\underbrace{2,\ldots,2}_{n/2},\underbrace{1,\ldots,1}_{n/2},0)$.

Corollary. There exists no κ -spread of $PHG(_RR^4)$ with $\kappa=(2,2,1,0)$.

- $\Pi = \mathrm{PHG}(_RR^4)$, $|R| = q^2$, $R/\mathrm{rad}\,R \cong \mathbb{F}_q$
- S a subspace of shape (2, 2, 1, 0)
- U an Hjelmslev subspace of shape (2, 2, 2, 0)
- Observation: if $[x] \cap S \subseteq [x] \cap U$ for some point $x \in \mathcal{P}$ then $S \subseteq [U]$.

More generally:

Theorem. Let R be a chain ring of length m. Let $\Pi = \operatorname{PHG}({}_RR^n)$. There exists no κ -spread of Π for $\kappa = (\underbrace{m, \ldots, m}_{n/2}, \underbrace{m-1, \ldots, m-1}_{n/2-1}, 0)$.

Theorem. Let R be a finite chain ring of length 2 and let $\Pi = \operatorname{PHG}(_RR^n)$ be the corresponding (left) projective Hjelmslev space. There exists no κ -spread of $\Pi = \operatorname{PHG}(_RR^n)$ with $\kappa = (\underbrace{2,\ldots,2}_{n/2},\underbrace{1,\ldots,1}_{n/2-a},\underbrace{0,\ldots,0}_{a})$, where $1 \leq a \leq \frac{n}{2}-1$.

For chain rings of length 2 and dimension of the free part equal to n/2, we have:

Shape	Existence
$(\underbrace{2,\ldots,2},\underbrace{0,\ldots,0})$	YES
$(\underbrace{2,\ldots,2}_{n/2},1,\underbrace{0,\ldots,0}_{n/2})$	NO
$(\underbrace{2,\ldots,2}_{n/2},1,1\underbrace{0,\ldots,0}_{n/2-2})$	NO
$(2,\ldots,2,\underbrace{1,\ldots,1},0)$	NO
$(\underbrace{2,\ldots,2}_{n/2},\underbrace{1,\ldots,1}_{n/2})$	YES

4. Further non-existence results

Does there exist a κ -spread for $\tau=(3,3,1,0)$, in $\mathrm{PHG}(_RR^4)$, where R is a chain ring with $|R|=q^3$, $R/\operatorname{rad} R\cong \mathbb{F}_q$?

of points in a subspace of shape $(3,3,1,0)=q^3(q+1)$

$$\#$$
 of subspaces in the spread $=$ $\frac{q^6(q^3+q^2+q+1)}{q^3(q+1)}=q^5+q^3$.

 $[\pi]$: 1-neighbour class of planes.

There exist three possibilities for the intersection of a subspace S of shape (3,3,1,0) with $[\pi]$:

- (1) S is contained in $[\pi]$ and contained in a plane from $[\pi]$;
- (2) S is contained in π but is not contained in a plane from π ;
- (3) S is not contained in $[\pi]$.

A=# of subspaces from the spread of type (1) or (2)

B = # of subspaces from the spread of type (3)

$$\begin{vmatrix} A & + & B & = q^5 + q^3 \\ q^3(q+1)A & + & q^3B & = q^6(q^3 + q^2 + q + 1) \end{vmatrix}$$

 $A=q^3$, $B=q^5$ for every neighbour class of planes $[\pi]$

Observation: There are at least $q^3 - q + 1$ subspaces of type (1) and at most q-1 subspaces of type (2) in any class $[\pi]$.

Count the number of pairs $(S, [\pi])$, where

- $\diamond S$ is a subspace from the spread of type (2).
- \diamond $[\pi]$ is a 1-neighbour class of planes containing π

For each S there exist q choices for π . Therefore

$$\#(S, [\pi]) = q^5 + q^3.$$

On the other hand, for each class $[\pi]$ there exist at most q-1 choices for S. Hence

$$\#(S, [\pi]) \le (q^3 + q^2 + q + 1)(q - 1) = q^4 - 1,$$

a contradiction.

More generally:

Theorem. Let R be a chain ring of length $m \geq 3$. Let $\Pi = \mathrm{PHG}(_RR^n)$. There exists no κ -spread of Π for $\kappa = (\underbrace{m, \ldots, m}_{n/2}, \underbrace{m-2, \ldots, m-2}_{n/2-1}, 0)$.

Open problem:

Find a "nice" necessary and sufficient condition on κ for the existence κ -spread in $PHG(_RR^n)$.