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Subspace Codes

I codeword: subspace of Fv
q

I distance d : graph theoretic distance in the
Hasse diagram of the subspace lattice of Fv

q;
U,W ≤ Fv

q:
d(U,W ) = dim(U) + dim(W )− 2 dim(U ∩W )

I problem: find a large set of subspaces of Fv
q

with pairwise distances ≥ d
I constant dimension code: all codewords have

dimension k



Algorithmic approaches for the
determination of the maximum cardinality

I formulation as a clique problem in a graph (subspaces are
vertices, two vertices are connected by an edge iff their
distance is ≥ d) cliquer (ask Patric)

I formulation as a Diophantine equation system (using slack
variables) LLL based solver (ask Alfred)

I formulation as an Integer Linear Program (chosen
subspaces are variables) e.g. CPLEX, Gurobi (this talk)

Reference

(sorry, no use of automorphisms here. . . )

Axel Kohnert and S.K. (2008): Construction of large constant
dimension codes with a prescribed minimum distance.
In: Calmet, Jacques (Eds.): Mathematical Methods in Computer
Science Springer 31-42.
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An example
Honold, Kiermaier, and K. (2015)
The maximum cardinality of a constant dimension code with
parameters q = 2, v = 6, k = 3, and minimal distance d = 4 is
77. There are exactly 5 non-isomorphic extremal codes. Some
of these can be generalized to arbitrary q.

Given the corresponding graph G = (V ,E) we can formulate

max
∑
v∈V

xv

s.t. xu + xv ≤ 1 ∀{u, v} ∈ E =

(
V
2

)
\E

xv ∈ {0,1} ∀v ∈ V (xv ∈ [0,1] ∀v ∈ V )

I solution time of the LP-relaxation: 5 seconds 93
I solution time of the ILP: hopeless
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Branch & Bound
max 13x1 + 8x2

s.t. x1 + 2x2 ≤ 10, 5x1 + 2x2 ≤ 20, x1, x2 ∈ Z≥0



Polyhedral descriptions

2Y − 3X ≤ 2
X + Y ≤ 5
1 ≤ X ≤ 3
1 ≤ Y ≤ 3
X ,Y ∈ Z

Add the valid constraint −X + Y ≤ 1
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A perfect polyhedral description

2Y − 3X ≤ 2
X + Y ≤ 5
−X + Y ≤ 1
1 ≤ X ≤ 3
1 ≤ Y ≤ 3
X ,Y ∈ Z

The LP-relaxation coincides with the ILP formulation!
(2Y − 3X ≤ 2 is superfluous.)



A better polyhedral description for our
example

I use independent set constraints:∑
v∈I

xv ≤ 1 for an independent set I∑
E≤F6

2 :U≤E , dim(E)=3

xE ≤ 1 ∀U ≤ F6
2 : dim(U) = 2

solution time of the LP-relaxation: 3 seconds 93

I use sub-graph constraints:∑
v∈G′

xv ≤ α(G′) for a subgraph G′ ≤ G∑
E≤F6

2 :U≤E , dim(E)=3

xE ≤ 9 ∀U ≤ F6
2 : dim(U) = 1

solution time of the LP-relaxation: 1.5 seconds 81
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Symmetry kills the ILP solver. . .

Symmetry group
GL(6,2) of order 20 158 709 760

General approach
I identify some appropriate (geometric) sub-configuration
I generate all sub-configurations up to isomorphism
I prescribe each of the sub-configurations (each one

separately, Step 1)
I exclude all sub-configurations (Step 2)
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Appropriate sub-configurations
9-configurations
A subset of the code consisting of 9 planes passing through a
common point P.∑

E≤F6
2 :U≤E , dim(E)=3

xE =9 where U ≤ F6
2 : dim(U) = 1

Up to isomorphism there are just four 9-configurations.

17-configurations
A subset of size 17 consisting of two 9-configurations with a
common codeword.
There are 12 770 isomorphism types of 17-configurations.



Another example – the mixed
dimensional case

Problem
Determine the maximum sizes A2(6,d) of binary (q = 2)
“mixed-dimension” subspace codes with packet length v = 6 and
minimum subspace distance d ∈ {1,2,3,4,5,6}.

Trivial case
I d = 1: take all subspaces 2825

Easy cases (theoretical and computational)
I d = 2: take all subspaces of odd dimension 1521; for the

upper bound a result of Ahlswede and Aydinian (On error
control codes for random network coding, 2009) can be used

I d = 5,6: plane spreads 9
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Valid inequalities for d = 4
∑

E≤F6
2 : U≤E, dim(E)=3

xE ≤ 1 ∀U ≤ F6
2 : dim(U) = 2

∑
E≤F6

2 : E≤U, dim(E)=3

xE ≤ 1 ∀U ≤ F6
2 : dim(U) = 4

∑
E≤F6

2 : U≤E, dim(E)≤5

xE ≤ 9 ∀U ≤ F6
2 : dim(U) = 1

∑
E≤F6

2 : E≤U, dim(E)≥1

xE ≤ 9 ∀U ≤ F6
2 : dim(U) = 5

∑
P≤U : dim(P)=1

xP + xU + xU′ +
∑

E≤F6
2 : U≤E, dim(E)=3

xE ≤ 1 ∀U ≤ U ′ ≤ F6
2 : dim(U) = 2, dim(U ′) = 4

. . .

Several further inequalities can be stated. In the literature the
problem is known as Erdős-Ko-Rado sets.



Appropriate sub-configurations for d = 4

I 9-configurations
I 17-configurations
I something that still needs to be discovered. . . (or just

prescribing a few points)



Excluding 17-configurations
I let U,U ′ ≤ F6

2, dim(U) = dim(U ′) = 1; C the entire code
I
∑

E≤F6
2 :U≤E , dim(E)=3 xE ≤ 9 (affects 155 xE ; S1)

I
∑

E≤F6
2 :U

′≤E , dim(E)=3 xE ≤ 9 (affects 155 xE ; S2)
I we consider the three-dimensional subspaces E with either

U ≤ E or U ′ ≤ E (295 cases; S1 ∪ S2) for U 6= U ′

I if C ∩S1 ∩S2 6= ∅ then |C ∩ (S1 ∪ S2)| ≤ 16 (no 17-configuration)

I if C ∩ S1 ∩ S2 = ∅ then |C ∩ (S1 ∪ S2)| ≤ 18
I |C ∩ S1 ∩ S2| ≤ 1∑

E∈S1∩S2

3xE +
∑

E∈(S1∪S2)\(S1∩S2)

1xE ≤ 18

(Big-M constraint for conditional inequalities.)
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Results for d = 4

I prescribe a 17-configuration 77 (only 3-dimensional
subspaces are used)

I prescribe a 9-configuration, exclude 17-configurations 
≤ 74 (even using the LP relaxation)

I exclude 9-configurations 51 . . . 98 (another
sub-configuration to kill symmetry is needed)

Summary
The maximum cardinality for d = 4 lies between 77 and 98.
(Of course the exact upper bound is 77 and the already classified 5
isomorphism types are the complete list of extremal codes.)



Results for d = 3
I an example of cardinality 104 has been found
I prescribe a 17-configuration (not completed yet)
I prescribe a 9-configuration, exclude 17-configurations 
≤ 97 . . . 114 (still too weak)

I exclude 9-configurations ≤ 119 (still very weak)

Summary
The maximum cardinality for d = 3 lies between 104 and 119.
(We do not know the exact answer yet. The previously best known bounds
were, up to our knowledge, 85 and 123.)

Thank you very much for your attention!
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