# ILP techniques for binary subspace codes

Sascha Kurz University of Bayreuth sascha.kurz@uni-bayreuth.de

joint work with

**Thomas Honold** 

Zhejiang University honold@zju.edu.cn

and

Michael Kiermaier

University of Bayreuth michael.kiermaier@uni-bayreuth.de





Algebraic combinatorics and applications (ALCOMA), Kloster Banz, Germany, 15.-20.03.2015

## Subspace Codes

- codeword: subspace of  $\mathbb{F}_{a}^{v}$
- ▶ distance d: graph theoretic distance in the Hasse diagram of the subspace lattice of F<sup>v</sup><sub>q</sub>; U, W ≤ F<sup>v</sup><sub>q</sub>:

 $d(U, W) = \dim(U) + \dim(W) - 2\dim(U \cap W)$ 

- ▶ problem: find a *large* set of subspaces of 𝔽<sup>v</sup><sub>q</sub> with pairwise distances ≥ *d*
- constant dimension code: all codewords have dimension k

#### Reference

Formulation as a clique problem in a graph (subspaces are vertices, two vertices are connected by an edge iff their distance is ≥ d) → cliquer (ask Patric)

#### Reference

- Formulation as a clique problem in a graph (subspaces are vertices, two vertices are connected by an edge iff their distance is ≥ d) → cliquer (ask Patric)
- ► formulation as a Diophantine equation system (using slack variables) ~→ LLL based solver (ask Alfred)

#### Reference

- Formulation as a clique problem in a graph (subspaces are vertices, two vertices are connected by an edge iff their distance is ≥ d) → cliquer (ask Patric)
- ► formulation as a Diophantine equation system (using slack variables) ~→ LLL based solver (ask Alfred)
- ▶ formulation as an Integer Linear Program (chosen subspaces are variables) ~→ e.g. CPLEX, Gurobi (this talk)

#### Reference (sorry, no use of automorphisms here...)

## An example

#### Honold, Kiermaier, and K. (2015)

The maximum cardinality of a constant dimension code with parameters q = 2, v = 6, k = 3, and minimal distance d = 4 is 77. There are exactly 5 non-isomorphic extremal codes. Some of these can be generalized to arbitrary q.

## An example

#### Honold, Kiermaier, and K. (2015)

The maximum cardinality of a constant dimension code with parameters q = 2, v = 6, k = 3, and minimal distance d = 4 is 77. There are exactly 5 non-isomorphic extremal codes. Some of these can be generalized to arbitrary q.

Given the corresponding graph G = (V, E) we can formulate

 $\max \sum_{v \in V} x_{v}$ s.t.  $x_{u} + x_{v} \le 1 \quad \forall \{u, v\} \in \overline{E} = \binom{V}{2} \setminus E$ 

 $x_{\nu} \in \{0,1\} \quad \forall \nu \in V \quad (x_{\nu} \in [0,1] \quad \forall \nu \in V)$ 

## An example

#### Honold, Kiermaier, and K. (2015)

The maximum cardinality of a constant dimension code with parameters q = 2, v = 6, k = 3, and minimal distance d = 4 is 77. There are exactly 5 non-isomorphic extremal codes. Some of these can be generalized to arbitrary q.

Given the corresponding graph G = (V, E) we can formulate

- $\begin{array}{ll} \max & \sum_{v \in V} x_v \\ \text{s.t.} & x_u + x_v \le 1 \quad \forall \{u, v\} \in \overline{E} = \binom{V}{2} \setminus E \\ & x_v \in \{0, 1\} \quad \forall v \in V \quad (x_v \in [0, 1] \quad \forall v \in V) \end{array}$
- solution time of the LP-relaxation: 5 seconds ~ 93
- solution time of the ILP: hopeless

### Branch & Bound

max  $13x_1 + 8x_2$ 

s.t.  $x_1 + 2x_2 \le 10, \ 5x_1 + 2x_2 \le 20, \ x_1, x_2 \in \mathbb{Z}_{\ge 0}$ 



### Polyhedral descriptions



### Polyhedral descriptions



Add the valid constraint  $-X + Y \leq 1$ 

### A perfect polyhedral description



The LP-relaxation coincides with the ILP formulation!  $(2Y - 3X \le 2 \text{ is superfluous.})$ 

## A better polyhedral description for our example

► use independent set constraints:  $\sum_{v \in I} x_v \leq 1 \text{ for an independent set } I$   $\sum_{E \leq \mathbb{F}_2^6 : U \leq E, \dim(E) = 3} x_E \leq 1 \quad \forall U \leq \mathbb{F}_2^6 : \dim(U) = 2$ 

solution time of the LP-relaxation: 3 seconds ~> 93

## A better polyhedral description for our example

► use independent set constraints:  $\sum_{v \in I} x_v \le 1 \text{ for an independent set } I$   $\sum_{E \le \mathbb{F}_2^6 : U \le E, \dim(E) = 3} x_E \le 1 \quad \forall U \le \mathbb{F}_2^6 : \dim(U) = 2$ 

solution time of the LP-relaxation: 3 seconds ~> 93

use sub-graph constraints:

 $\sum\limits_{m{v}\in G'}m{x}_{m{v}}\leq lpha(G')$  for a subgraph  $G'\leq G$ 

 $\sum_{E \leq \mathbb{F}_2^6 : U \leq E, \dim(E) = 3} x_E \leq 9 \quad \forall U \leq \mathbb{F}_2^6 : \dim(U) = 1$ 

solution time of the LP-relaxation: 1.5 seconds ~> 81

### Symmetry kills the ILP solver...

Symmetry group

GL(6, 2) of order 20 158 709 760

## Symmetry kills the ILP solver...

#### Symmetry group

#### GL(6, 2) of order 20 158 709 760

#### General approach

- identify some appropriate (geometric) sub-configuration
- generate all sub-configurations up to isomorphism
- prescribe each of the sub-configurations (each one separately, Step 1)
- exclude all sub-configurations (Step 2)

## Appropriate sub-configurations

#### 9-configurations

A subset of the code consisting of 9 planes passing through a common point *P*.

 $\sum_{E \leq \mathbb{F}_2^6 : U \leq E, \dim(E) = 3} x_E = 9 \text{ where } U \leq \mathbb{F}_2^6 : \dim(U) = 1$ 

Up to isomorphism there are just four 9-configurations.

#### 17-configurations

A subset of size 17 consisting of two 9-configurations with a common codeword. There are 12 770 isomorphism types of 17-configurations.

## Another example – the mixed dimensional case

#### Problem

Determine the maximum sizes  $A_2(6, d)$  of binary (q = 2)"mixed-dimension" subspace codes with packet length v = 6 and minimum subspace distance  $d \in \{1, 2, 3, 4, 5, 6\}$ .

## Another example – the mixed dimensional case

#### Problem

Determine the maximum sizes  $A_2(6, d)$  of binary (q = 2)"mixed-dimension" subspace codes with packet length v = 6 and minimum subspace distance  $d \in \{1, 2, 3, 4, 5, 6\}$ .

#### Trivial case

• d = 1: take all subspaces  $\rightarrow 2825$ 

#### Easy cases (theoretical and computational)

- ► d = 2: take all subspaces of odd dimension ~→ 1521; for the upper bound a result of Ahlswede and Aydinian (On error control codes for random network coding, 2009) can be used
- d = 5, 6: plane spreads  $\rightarrow 9$

## Valid inequalities for d = 4

 $\sum x_E \leq 1 \quad \forall U \leq \mathbb{F}_2^6 : \dim(U) = 2$  $E < \mathbb{F}_2^6 : U < E, \dim(E) = 3$  $\sum x_E \leq 1 \quad \forall U \leq \mathbb{F}_2^6 : \dim(U) = 4$  $E < \mathbb{F}_{2}^{6} : E < U, \dim(E) = 3$  $\sum x_E \le 9 \quad \forall U \le \mathbb{F}_2^6 : \dim(U) = 1$  $E < \mathbb{F}_2^6 : U < E, \dim(E) < 5$  $\sum x_E \le 9 \quad \forall U \le \mathbb{F}_2^6 : \dim(U) = 5$  $E \leq \mathbb{F}_2^6 : E \leq U, \dim(E) \geq 1$  $\sum x_{P} + x_{U} + x_{U'} + \sum x_{E} \le 1 \quad \forall U \le U' \le \mathbb{F}_{2}^{6} : \dim(U) = 2, \dim(U') = 4$  $P \leq U : \dim(P) = 1$   $E < \mathbb{F}_2^6 : U \leq E, \dim(E) = 3$ 

Several further inequalities can be stated. In the literature the problem is known as Erdős-Ko-Rado sets.

## Appropriate sub-configurations for d = 4

- 9-configurations
- 17-configurations
- something that still needs to be discovered... (or just prescribing a few points)

### **Excluding 17-configurations**

- ▶ let  $U, U' \leq \mathbb{F}_2^6$ , dim(U) = dim(U') = 1; C the entire code
- $\sum_{E \leq \mathbb{F}_2^6 : U \leq E, \dim(E)=3} x_E \leq 9$  (affects 155  $x_E; S_1$ )
- ►  $\sum_{E \leq \mathbb{F}_2^6 : U' \leq E, \dim(E)=3} x_E \leq 9$  (affects 155  $x_E; S_2$ )
- we consider the three-dimensional subspaces *E* with either *U* ≤ *E* or *U*' ≤ *E* (295 cases; *S*<sub>1</sub> ∪ *S*<sub>2</sub>) for *U* ≠ *U*'

### **Excluding 17-configurations**

- ▶ let  $U, U' \leq \mathbb{F}_2^6$ , dim(U) = dim(U') = 1; C the entire code
- $\sum_{E \leq \mathbb{F}_2^6 : U \leq E, \dim(E)=3} x_E \leq 9$  (affects 155  $x_E; S_1$ )
- $\sum_{E \leq \mathbb{F}_2^6 : U' \leq E, \dim(E)=3} x_E \leq 9$  (affects 155  $x_E; S_2$ )
- ▶ we consider the three-dimensional subspaces *E* with either  $U \le E$  or  $U' \le E$  (295 cases;  $S_1 \cup S_2$ ) for  $U \ne U'$
- ▶ if  $C \cap S_1 \cap S_2 \neq \emptyset$  then  $|C \cap (S_1 \cup S_2)| \le 16$  (no 17-configuration)
- if  $\mathcal{C} \cap S_1 \cap S_2 = \emptyset$  then  $|\mathcal{C} \cap (S_1 \cup S_2)| \le 18$
- $\bullet |\mathcal{C} \cap S_1 \cap S_2| \leq 1$

## **Excluding 17-configurations**

- ▶ let  $U, U' \leq \mathbb{F}_2^6$ , dim(U) = dim(U') = 1; C the entire code
- $\sum_{E \leq \mathbb{F}_2^6 : U \leq E, \dim(E)=3} x_E \leq 9$  (affects 155  $x_E; S_1$ )
- ►  $\sum_{E \leq \mathbb{F}_2^6 : U' \leq E, \dim(E)=3} x_E \leq 9$  (affects 155  $x_E; S_2$ )
- ▶ we consider the three-dimensional subspaces *E* with either  $U \le E$  or  $U' \le E$  (295 cases;  $S_1 \cup S_2$ ) for  $U \ne U'$
- ▶ if  $C \cap S_1 \cap S_2 \neq \emptyset$  then  $|C \cap (S_1 \cup S_2)| \le 16$  (no 17-configuration)
- if  $\mathcal{C} \cap S_1 \cap S_2 = \emptyset$  then  $|\mathcal{C} \cap (S_1 \cup S_2)| \le 18$
- $|\mathcal{C} \cap S_1 \cap S_2| \leq 1$

$$\sum_{E \in S_1 \cap S_2} 3x_E + \sum_{E \in (S_1 \cup S_2) \setminus (S_1 \cap S_2)} 1x_E \leq 18$$

(Big-*M* constraint for conditional inequalities.)

## Results for d = 4

- prescribe a 17-configuration ~> 77 (only 3-dimensional subspaces are used)
- ► prescribe a 9-configuration, exclude 17-configurations ~→ ≤ 74 (even using the LP relaxation)
- exclude 9-configurations ~> 51 ... 98 (another sub-configuration to kill symmetry is needed)

#### Summary

The maximum cardinality for d = 4 lies between 77 and 98. (Of course the exact upper bound is 77 and the already classified 5 isomorphism types are the complete list of extremal codes.)

## Results for d = 3

- an example of cardinality 104 has been found
- prescribe a 17-configuration ~> (not completed yet)
- ► prescribe a 9-configuration, exclude 17-configurations ~→ ≤ 97...114 (still too weak)
- ► exclude 9-configurations ~→ ≤ 119 (still very weak)

#### Summary

The maximum cardinality for d = 3 lies between 104 and 119. (We do not know the exact answer yet. The previously best known bounds were, up to our knowledge, 85 and 123.)

## Results for d = 3

- an example of cardinality 104 has been found
- prescribe a 17-configuration ~> (not completed yet)
- ► prescribe a 9-configuration, exclude 17-configurations ~→ ≤ 97...114 (still too weak)
- ► exclude 9-configurations ~→ ≤ 119 (still very weak)

#### Summary

The maximum cardinality for d = 3 lies between 104 and 119. (We do not know the exact answer yet. The previously best known bounds were, up to our knowledge, 85 and 123.)

#### Thank you very much for your attention!