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Abstract

We consider a rather general class of trades, which generalizes
several known types of trades, including latin trades, Steiner
(k − 1, k , v) trades, extended 1-perfect bitrades.

We prove a characterization of minimal (in the sence of the
weight-distribution bound) trades in terms of isometric
bipartite distance-regular subgraphs of the original
distance-regular graph.

An an application, we find the minimal cardinality of q-ary
Steiner (k − 1, k , v) bitrades and show a connection of such
bitrades with dual polar subgraphs of the Grassmann graph
Grq(v , k).
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Def: Distance-regular graphs

A connected graph Γ is called distance-regular if there are
constants b0, b1, . . . , bdiam(Γ)−1, c1, c2, . . . , cdiam(Γ) (called
intersection numbers) such that for exery vertices x and y at
distance i

|Γi−1(x) ∩ Γ1(y)| = ci ,

|Γi+1(x) ∩ Γ1(y)| = bi ,

where Γj(x) denotes the set of vertices at distance j from x .



Def: eigenfunction, eigenvalues

An eigenfunction of a graph Γ = (V ,E ) is a function f : V → R
that is not constantly zero and satisfies∑

y∈Γ1(x)

f (y) = θf (x) (1)

for all x from V and some constant θ, which is called an
eigenvalue of Γ.



(k , s,m) pairs, Delsarte pairs

Let Γ be a connected regular graph of degree k . Assume that
S is a set of (s + 1)-cliques in Γ such that every edge of Γ is
included in exactly m cliques from S ; in this case, we will say
that the pair (Γ, S) is a (k , s,m) pair.

A clique in a distance-regular graph of degree k is called a
Delsarte clique if it has exactly 1− k/θ elements, where θ is
the minimal eigenvalue of the graph.

A (k , s,m) pair (Γ,S) is called a Delsarte pair if Γ is a
distance-regular graph and s = −k/θ.
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Def: bitrade

Let (Γ,S) be a (k , s,m) pair. A couple (T0,T1) of mutually
disjoint nonempty vertex sets is called an S-bitrade, or a
clique bitrade, if every clique from S either intersects with
each of T0 and T1 in exactly one vertex or does not intersect
with both of them (in particular, this means that each of T0,
T1 is an independent set in Γ).

A set of vertices T0 is called an S-trade if there is another set
T1 (known as a mate of T0) such that the pair (T0,T1) is an
S-bitrade.

Note that there are differences in terminology.
We use “bitrade = (trade, trade)”
not “trade = (leg, leg)”.
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A bitrade criterion

Theorem

Let (Γ, S) be a (k , s,m) pair. Let T = (T0,T1) be a pair of
disjoint nonempty independent sets of vertices of Γ. The following
assertions are equivalent.

(a) T is an S-bitrade.

(b) The function

f T (x̄) = χ
T0

(x̄)− χ
T1

(x̄) =

{
(−1)i if x̄ ∈ Ti , i ∈ {0, 1}
0 otherwise

(2)
is an eigenfunction of Γ with eigenvalue θ = −k/s.

(c) The subgraph ΓT of Γ generated by the vertex set T0 ∪ T1 is
regular with degree −θ = k/s (as T0 and T1 are independent
sets, this subgraph is bipartite).



Distance-regular graph → Delsarte pair

Lemma

If, under notation and hypothesis of the previous Theorem, (a)–(c)
hold and, additionally, the graph Γ is distance-regular, then

θ is the minimal eigenvalue of Γ,

s + 1 is the maximal order of a clique in Γ, and

(Γ, S) is a Delsarte pair.



Calculating the weight distribution of an eigenfunction

Lemma

The weight distribution

W (x) =

 ∑
y∈Γ0(x)

f (y),
∑

y∈Γ1(x)

f (y), . . . ,
∑

y∈Γdiam(Γ)(x)

f (y)


of an eigenfunction f of a distance-regular graph Γ is calculated as

(f (x)W i
A,θ)

diam(Γ)
i=0 where the coefficients W i

A,θ are derived from the
intersection array A = (b0, . . . , cdiam(Γ)) of Γ and the eigenvalue θ
that corresponds to f .

Corollary (the weight-distribution (w.d.) bound)

An eigenfunction f of a distance-regular graph has at least∑diam(Γ)
i=0 |W i

A,θ| nonzeros, in notation of the Lemma.



Trades that meet the w.d. bound

Theorem

Let (Γ, S) be a (k , s,m) Delsarte pair. Let T = (T0,T1) be a pair
of disjoint nonempty independent sets of vertices of Γ. The
following are equivalent.

(a’) T is an S-bitrade meeting the w.d. bound.

(b’) The function f T is an eigenfunction of Γ
meeting the w.d. bound with eigenvalue −k/s.

(c’) The subgraph ΓT is a regular isometric subgraph with degree
k/s.



Distance regularity of ΓT

Theorem

Assume that, under the notation and the hypothesis of the previous
Theorem, (a’)–(c’) hold. Then the graph ΓT is distance-regular.

Corollary

For every distance-regular graph Γ admitting a Delsarte pair, there
is a sequence A′ = (b′0, . . . , b

′
diam(Γ)−1; c ′1, . . . , c

′
diam(Γ)) such that

the existence of a clique bitrade in Γ meeting the w.d. bound is
equivalent to the existence of an isometric distance-regular
subgraph with intersection array A′.



Clique designs

Given a Delsarte pair (Γ,S), we define a clique design as a set of
vertices that intersects with every clique from S in exactly one
vertex. Examples of clique designs: distance-2 MDS codes
(Hamming graphs), STS, SQS, ... (Johnson graphs), extended
1-perfect binary codes (halved n-cube), STSq (Grassmann graph).



Example. Latin bitrades

The vertex set of the Hamming graph H(n, q) is the set
{0, . . . , q − 1}n of words of length n over the alphabet
{0, . . . , q − 1}. Two words are adjacent whenever they differ
in exactly one position. The graph H(n, 2) is also known as
the n-cube, or the hypercube of dimension n.

The clique designs in Hamming graphs are known as the latin
hypercubes (in coding theory, these objects are known as the
distance-2 MDS codes), and the clique bitrades, as the latin
bitrades [1]. The most studied case, which corresponds to the
latin squares, is n = 3, see e.g. [2].

The graph corresponding to a minimal bitrade is H(n, 2).

1V. N. Potapov. Multidimensional Latin bitrades. Sib. Math. J.,
54(2):317–324, 2013.

2N. J. Cavenagh. The theory and application of latin bitrades: A survey.
Math. Slovaca, 58(6):691–718, 2008.
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Example. Steiner trades

The vertices of the Johnson graph J(n,w) are the binary
words of length n and weight (the number of ones) w . Two
words are adjacent whenever they differ in exactly two
positions. The graphs J(n,w) and J(n, n−w) are isomorphic,
and below we assume 2w ≤ n.

The clique designs in Johnson graphs are known as the
Steiner S(w − 1,w , n) systems, and the clique bitrades, as the
Steiner T(w − 1,w , n) bitrades. The subgraph corresponding
to a minimal bitrade is H(w , 2); an example of the vertex set
of such subgraph is
{(x , x̄ , 0, ..., 0) | x , x̄ ∈ {0, 1}w , x̄ is opposite to x}. The
minimal bitrade cardinality was found in [3].

In the case w = 3, the minimal trade is known as the Pasch
configuration, or the quadrilateral.

3H. L. Hwang. On the structure of (v , k, t) trades. J. Stat. Plann.
Inference, 13:179–191, 1986.
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Example. Halved hypercube

The vertices of the halved n-cube are the even-weight binary
words of length n (i.e., a part of the bipartite n-cube). Two
words are adjacent whenever they differ in exactly two
positions.

A maximal clique is the set of binary n-words adjacent in
H(n, 2) to a fixed odd-weight word. The clique designs in
halved n-cubes are the extended 1-perfect codes. Such codes
exist if and only if n is a power of two.

The minimal cardinality of a bitrade is 2n/2. An example of a
minimal bitrade is {(x , x) | x ∈ {0, 1}n/2}; bitrades exist if
and only if n is even. The graph corresponding to a minimal
bitrade is H(n/2, 2).
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q-ary Steiner systems

Let F n
q be an n-dimensional vector space over the Galois field

Fq of prime-power order q. The Grassmann graph Grq(n, d) is
defined as follows. The vertices are the d-dimensional
subspaces of F n

q . Two vertices are adjacent whenever they
intersect in a (d − 1)-dimensional subspace.

All vertices that include a fixed (d − 1)-dimensional subspace
form a clique in Grq(n, d); if n ≥ 2d then this clique is
maximal. We form S from all such cliques.

A set of vertices that intersect with every cliques from S in
exactly one vertex is known as a q-ary Steiner Sq[d − 1, d , n]
system. Constructing q-ary Steiner Sq[d − 1, d , n] systems
with d ≥ 3 is not easy; at the moment, only the existence of
S2[2, 3, 13] is known in this field [4].

An S-bitrade is called a Steiner Tq[d − 1, d , n] bitrade.

4M. Braun, T. Etzion, P. R. J. Österg̊ard, A. Vardy, and A. Wassermann.
Existence of q-analogs of Steiner systems. ArXiv: 1304.1462, 2013.
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dual polar graph

The dual polar graph Dd(q) is a subgraph of Grq(2d , d) that
has as vertices the maximal isotropic subspaces with respect
to the quadratic form
Q(v1, . . . , vd , u1, . . . ud) = v1u1 + · · ·+ vdud (i.e., the
subspaces of dimension d on which the form vanishes).

Dd(q) is a bipartite isometric subgraph of Grq(2d , d) and has
degree (qd − 1)/(q − 1) (as required :) ).
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Minimal cardinality of a q-ary Steiner bitrade

Theorem

The minimal cardinality of a Steiner Tq[d − 1, d , n ≥ 2d ] bitrade is

d∏
i=1

(qd−i + 1) =
d∑

i=0

q( i
2)
[

d

i

]
q

, (3)

which is also the minimal number of nonzeros of an eigenfunction
with the minimal eigenvalue in Grq(n, d), n ≥ 2d.

For the proof, it remains to note that Grq(2d , d) is an isometric
subgraph of Grq(n, d).



A small example

The minimal cardinality of T2[2, 3, n] is 2 · 15 = 1 + 7 + 14 + 8.

Such minimal bitrade can be considered as a q-ary analog of
the Pasch configuration.

Note that the Pasch configuration, together with its trade
mate, consists of all eight weight-3 binary words of length 6
on which the form Q(...) = v1u1 + v2u2 + v3u3 vanishes.
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Conclusion

We considered trades that can be treated as clique trades in
distance-regular graphs.

Some other types of trades can also be considered as clique
trades, but the corresponding graphs are not distance-regular.
For example, q-ary 1-perfect trades with q > 2, MDS trades
with distance > 2, Steiner (t, k , n) trades with t < k − 1.


