The dual *q*-matroid and the *q*-analogue of a complement

Relinde Jurrius

University of Neuchâtel, Switzerland

ALCOMA March 20, 2015

q-Analogues

Finite set \longrightarrow finite vectorspace over \mathbb{F}_{q}

Example

 $\begin{bmatrix} n \\ k \end{bmatrix}_{q}$ = number of k-dim subspaces of n-dim vectorspace over \mathbb{F}_{q}

$$= \prod_{i=0}^{k-1} rac{q^n-q^i}{q^k-q^i}$$

Motivation: network coding

Codewords are vectors:

'Ordinary' error-correcting codes

Codewords are matrices:

Rank metric codes

q-analogue of 'ordinary' codes

Codewords are subspaces:

Subspace codes

Constant dimension, constant weight: q-design

q-Analogues

finite set	finite space \mathbb{F}_q^n
element	1-dim subspace
size	dimension
п	$rac{q^n-1}{q-1}$
intersection	intersection
union	sum
complement	??
difference	??

From q-analogue to 'normal': let $q \rightarrow 1$.

Matroids and *q*-matroids

Matroid: a pair (E, \mathcal{B}) with

- ► E finite set;
- $\mathcal{B} \subseteq 2^E$ family of subsets of *E*, the *bases*, with:
 - $\begin{array}{ll} (\mathsf{B1}) & \mathcal{B} \neq \emptyset \\ (\mathsf{B2}) & \mathsf{If} & B_1, B_2 \in \mathcal{B} \text{ then } |B_1| = |B_2|. \\ (\mathsf{B3}) & \mathsf{If} & B_1, B_2 \in \mathcal{B} \text{ and } x \in B_1 B_2, \text{ then there is a } y \in B_2 B_1 \\ & \mathsf{such that} & B_1 x \cup \{y\} \in \mathcal{B}. \end{array}$

Examples:

- ► Set of vectors; basis = maximal linearly independent subset
- ► Set of edges of a graph; basis = maximal cycle-free subset

Candidates for complement A^c of $A \subseteq E$:

 All vectors outside A But: not a space

Candidates for complement A^c of $A \subseteq E$:

- All vectors outside A But: not a space
- ▶ Orthogonal complement But: $A \cap A^{\perp}$ can be nontrivial

Candidates for complement A^c of $A \subseteq E$:

- All vectors outside A But: not a space
- ▶ Orthogonal complement But: $A \cap A^{\perp}$ can be nontrivial
- ► Quotient space *E*/*A*

But: changes ambient space

Candidates for complement A^c of $A \subseteq E$:

- All vectors outside A But: not a space
- ▶ Orthogonal complement But: $A \cap A^{\perp}$ can be nontrivial
- ► Quotient space *E*/*A*

But: changes ambient space

► Subspace such that A ⊕ A^c = E But: not unique

Candidates for complement A^c of $A \subseteq E$:

- All vectors outside A But: not a space
- ▶ Orthogonal complement But: $A \cap A^{\perp}$ can be nontrivial
- Quotient space E/A But: changes ambient space
- ► Subspace such that A ⊕ A^c = E But: not unique
- ► All subspaces such that A ⊕ A^c = E But: more than one space

Solution for *q*-matroids:

E - A is a subspace such that $(E - A) \oplus A = E$, so $(E - A) \cap A = \mathbf{0}$.

When used, we show independence of choice of E - A.

$$x \subseteq E - A$$
 independent of choice $\rightarrow x \subseteq E, x \not\subseteq A$.

Differences: A - B is complement of $A \cap B$ in A.

Matroids and *q*-matroids

q-Matroid: a pair (E, \mathcal{B}) with

- E finite space;
- $\mathcal{B} \subseteq 2^{\mathcal{E}}$ family of subspaces of \mathcal{E} , the *bases*, with:

(B1)
$$\mathcal{B} \neq \emptyset$$

- (B2) If $B_1, B_2 \in \mathcal{B}$ then dim $B_1 = \dim B_2$.
- (B3) If $B_1, B_2 \in \mathcal{B}$ and $x \subseteq B_1, x \not\subseteq B_2$ a 1-dimensional subspace, then for every choice of $B_1 - x$ there is a 1-dimensional subspace $y \subseteq B_2$, $y \not\subseteq B_1$ such that $B_1 - x + y \in \mathcal{B}$.

Example: rank metric code $C \subseteq \mathbb{F}_{q^m}^n$

Why study *q*-matroids?

Matroids generalize:

- ► codes
- ► graphs
- ► some designs

q-Matroids generalize:

- rank metric codes
- ► *q*-graphs ?
- ► *q*-designs ?

$$M = (E, B)$$
 a matroid, define $B^* = \{E - B : B \in B\}$.

Theorem $M^* = (E, \mathcal{B}^*)$ is a matroid.

Examples:

- Matroid of dual code = dual of matroid of code
- ► Matroid of dual planar graph = dual of matroid of graph

 $\mathcal{B}^* = \{ E - B : B \in \mathcal{B} \}$

Sketch of proof that \mathcal{B}^* satisfies (B1), (B2), (B3): (B1), (B2) clear. (B3) If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 - B_2$, then there is a $y \in B_2 - B_1$ such that $B_1 - x \cup \{y\} \in \mathcal{B}$.

 $M = (\mathcal{B}, E)$ a *q*-matroid

Suggestion: $\mathcal{B}^{\perp} = \{ B^{\perp} : B \in \mathcal{B} \}$

Pro:

$$\blacktriangleright |\mathcal{B}^{\perp}| = |\mathcal{B}|$$

•
$$M(C^{\perp}) = M^*(C)$$
 seems easy to prove

Con:

► This won't work:

 $M = (\mathcal{B}, E)$ a *q*-matroid

Suggestion: $\mathcal{B}^* = \{B^* : B^* \oplus B = E \text{ for some } B \in \mathcal{B}\}$

Con:

- $\blacktriangleright |\mathcal{B}^*| = ?$
- How to prove $M(C^{\perp}) = M^*(C)$?

Pro:

• (E, \mathcal{B}^*) is a *q*-matroid! (Proof: straightforward *q*-analogue.)

Example $E = \mathbb{F}_q^n$ $\mathcal{B} = \{B \subseteq E : \dim B = k\}, k \le n$ (E, \mathcal{B}) is the *uniform q-matroid*. It has $\mathcal{B}^* = \mathcal{B}^{\perp}$

Also, if we would allow $E = \mathbb{R}^n$, we have $\mathcal{B}^* = \mathcal{B}^{\perp}$.

Example $E = \mathbb{F}_q^n$ $\mathcal{B} = \{B \subseteq E : \dim B = k\}, k \leq n$ (E, \mathcal{B}) is the uniform q-matroid. It has $\mathcal{B}^* = \mathcal{B}^{\perp}$

Also, if we would allow $E = \mathbb{R}^n$, we have $\mathcal{B}^* = \mathcal{B}^{\perp}$.

Hopeful Hypothesis Let $B \in \mathcal{B}$, then there is a $B' \in \mathcal{B}$ such that $B' \cap B^{\perp} = \mathbf{0}$.

Things that bother me (and should bother you, too):

- ► How to know which *q*-analogue to use?
- ▶ If some *q*-analogue "works", does that mean the others don't?

Your ideas and opinions are welcome!

Overview and further work

- ► *q*-Analogues are studied nowadays because of network coding.
- ► We should study *q*-matroids for the same reasons we study matroids: they generalize several discrete structures.
- ► Duality for *q*-matroids is defined...
-But in the right way?
- ► Do dual rank metric codes give dual of *q*-matroid?
- Duality in terms of independent sets, circuits, rank function?
- ► We need better intuition on the *q*-analogue of complements.

Thank you for your attention.