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q-Analogues

Finite set −→ finite vectorspace over Fq

Example(
n

k

)
= number of sets of size k contained in set of size n

[
n

k

]
q

= number of k-dim subspaces of n-dim vectorspace over Fq

=
k−1∏
i=0

qn − qi

qk − qi



Motivation: network coding

Codewords are vectors:

‘Ordinary’ error-correcting codes

Codewords are matrices:

Rank metric codes

q-analogue of ‘ordinary’ codes

Codewords are subspaces:

Subspace codes

Constant dimension, constant weight: q-design



q-Analogues

finite set finite space Fn
q

element 1-dim subspace

size dimension

n qn−1
q−1

intersection intersection

union sum

complement ??

difference ??

From q-analogue to ‘normal’: let q → 1.



Matroids and q-matroids

Matroid: a pair (E ,B) with

I E finite set;
I B ⊆ 2E family of subsets of E , the bases, with:

(B1) B 6= ∅
(B2) If B1,B2 ∈ B then |B1| = |B2|.
(B3) If B1,B2 ∈ B and x ∈ B1 − B2, then there is a y ∈ B2 − B1

such that B1 − x ∪ {y} ∈ B.

Examples:

I Set of vectors; basis = maximal linearly independent subset

I Set of edges of a graph; basis = maximal cycle-free subset



q-Analogue of complement

Candidates for complement Ac of A ⊆ E :

I All vectors outside A
But: not a space

I Orthogonal complement
But: A ∩ A⊥ can be nontrivial

I Quotient space E/A
But: changes ambient space

I Subspace such that A⊕ Ac = E
But: not unique

I All subspaces such that A⊕ Ac = E
But: more than one space
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q-Analogue of complement

Solution for q-matroids:

E − A is a subspace such that (E − A)⊕ A = E ,
so (E − A) ∩ A = 0.

When used, we show independence of choice of E − A.

x ⊆ E − A independent of choice → x ⊆ E , x 6⊆ A.

Differences: A− B is complement of A ∩ B in A.



Matroids and q-matroids

q-Matroid: a pair (E ,B) with

I E finite space;
I B ⊆ 2E family of subspaces of E , the bases, with:

(B1) B 6= ∅
(B2) If B1,B2 ∈ B then dimB1 = dimB2.
(B3) If B1,B2 ∈ B and x ⊆ B1, x 6⊆ B2 a 1-dimensional subspace,

then for every choice of B1 − x there is a 1-dimensional
subspace y ⊆ B2, y 6⊆ B1 such that B1 − x + y ∈ B.

Example: rank metric code C ⊆ Fn
qm



Why study q-matroids?

Matroids generalize:

I codes

I graphs

I some designs

q-Matroids generalize:

I rank metric codes

I q-graphs ?

I q-designs ?



Duality in matroids

M = (E ,B) a matroid, define B∗ = {E − B : B ∈ B}.

Theorem
M∗ = (E ,B∗) is a matroid.

Examples:

I Matroid of dual code = dual of matroid of code

I Matroid of dual planar graph = dual of matroid of graph



Duality in matroids

B∗ = {E − B : B ∈ B}

Sketch of proof that B∗ satisfies (B1), (B2), (B3):

(B1), (B2) clear.

(B3) If B1,B2 ∈ B and x ∈ B1 − B2, then there is a y ∈ B2 − B1

such that B1 − x ∪ {y} ∈ B.

B1 B∗1

B2

B∗2

·x

·y



Duality in q-matroids

M = (B,E ) a q-matroid

Suggestion: B⊥ = {B⊥ : B ∈ B}

Pro:

I |B⊥| = |B|
I M(C⊥) = M∗(C ) seems easy to prove

Con:

I This won’t work:
B1 B∗1

B2

B∗2

·x

·y



Duality in q-matroids

M = (B,E ) a q-matroid

Suggestion: B∗ = {B∗ : B∗ ⊕ B = E for some B ∈ B}

Con:

I |B∗| =?

I How to prove M(C⊥) = M∗(C )?

Pro:

I (E ,B∗) is a q-matroid! (Proof: straightforward q-analogue.)



Duality in q-matroids

Example

E = Fn
q

B = {B ⊆ E : dimB = k}, k ≤ n

(E ,B) is the uniform q-matroid. It has B∗ = B⊥

Also, if we would allow E = Rn, we have B∗ = B⊥.

Hopeful Hypothesis

Let B ∈ B, then there is a B ′ ∈ B such that B ′ ∩ B⊥ = 0.
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q-Analogue of complement

Things that bother me (and should bother you, too):

I How to know which q-analogue to use?

I If some q-analogue “works”, does that mean the others don’t?

Your ideas and opinions are welcome!



Overview and further work

I q-Analogues are studied nowadays because of network coding.

I We should study q-matroids for the same reasons we study
matroids: they generalize several discrete structures.

I Duality for q-matroids is defined. . .

I . . . But in the right way?

I Do dual rank metric codes give dual of q-matroid?

I Duality in terms of independent sets, circuits, rank function?

I We need better intuition on the q-analogue of complements.



Thank you for your attention.


