Towards a classification of special partial spreads and subspace codes Alcoma 2015

Daniel Heinlein Daniel.Heinlein@stmail.uni-bayreuth.de University of Bayreuth

2015-03-19

joint work with T. Honold, M. Kiermaier, S. Kurz, A. Wassermann

contents

motivation

constant dimension codes

spectrum

further approach

motivation

T. Honold, M. Kiermaier, S. Kurz classified all optimal solutions for a specific set of parameters in *Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4*

now we want to classify all optimal subspace codes of length 5, constant dimension 2 and minimum distance 4 using the field \mathbb{F}_4

direct approach is too hard, therefore objective: find characteristics of optimal solutions

constant dimension codes

$$G(n,q,k):=\{U\leq \mathbb{F}_q^n|\dim(U)=k\}$$
 is called Grassmannian

 $C \subseteq G(n, q, k)$ is called constant dimension code with minimum distance

$$D(C) := \min\{2(k - \dim(U \cap V)|U \neq V \in C\} \ge 2d$$

$$\Leftrightarrow$$

$$\dim(U \cap V) \le k - d \ \forall U \neq V \in C$$

use: k = d = 2, known as partial spread (in PG(n - 1, q))

spectrum approach

objective: classification of all optimal solutions in $\mathbb{F}_4^5, k=d=2$

intermediate objective: characteristics of optimal solution \Rightarrow spectrum

therefore: let C optimal constant dimension code be given

spectrum _{y,a}

$$y_{H}^{C} := \#\{V \in C | V \le H\} \ \forall H \in G(n, q, n - 1)$$
$$a_{i}^{C} := \#\{H \in G(n, q, n - 1) | y_{H}^{C} = i\}$$

fact:
$$m \le y_H^C \le M \ \forall H \Rightarrow a_i^C = 0 \ \forall i \not \in \{m, \dots, M\}$$

yields some constraints on a_i^C

spectrum w,b

$$H^{C} := \{ h \in G(n, q, 1) | \forall V \in C : h \not\leq V \} \text{ is called holes}$$
 $w_{H}^{C} := \# \{ h \in H^{C} | h \leq H \} \ \forall H \in G(n, q, n - 1) \}$
 $b_{j}^{C} := \# \{ H \in G(n, q, n - 1) | w_{H}^{C} = j \} \}$

fact:
$$n=5$$
 in addition to $k=d=2$ yields: $b_j^C=0 \ \forall q \ \not|j$ and $a_i^C=b_{q^2-q(i-1)}^C$

yields some constraints on b_j^C

spectrum

spectrum = sequence of a_i^C and b_j^C

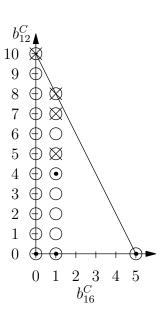
characteristic of optimal solution C

from now on: \mathbb{F}_4^5 , k=d=2: $(a_1^C,a_2^C,a_3^C,a_4^C,a_5^C,b_0^C,b_4^C,b_8^C,b_{12}^C,b_{16}^C)$ constraints \Rightarrow spectrum depends only on two variables

spectrum ILP

let C be any optimal solution

with
$$z \in \{b_{16}^{\mathcal{C}}, b_{12}^{\mathcal{C}}, 2 \cdot b_{16}^{\mathcal{C}} + b_{12}^{\mathcal{C}}\}$$
 or $(b_{16}^{\mathcal{C}}, b_{12}^{\mathcal{C}}) = \{0, \dots, 10\}^2$ as additional constraint



further approach

find more structure

compute representatives of orbit spaces

solve ILP using representatives as constraints

further approach possibility for structure

fact: every optimal solution contains structure:

$$\begin{cases} \{A, B_1, B_2, B_3, B_4, C_1, C_2, C_3, C_4\} \in \binom{G(5, 4, 2)}{9} \\ \exists H_1 \neq H_2 \in G(5, 4, 4) : A \leq H_1 \cap H_2 \land \\ B_i \leq H_1 \land C_j \leq H_2 \land \text{ only trivial intersections} \end{cases}$$

because $a_5 \ge 15$ and if this structure would be missing then any optimal solution would contain $\ge 15 \cdot 5 = 75 > 65$ elements

further approach possibility for structure

fact:

every optimal solution that is missing in the diagram contains structure:

$$\left\{ \left\{ h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9, h_{10}, h_{11}, h_{12} \right\} \in \binom{G(5, 4, 1)}{12} \middle| \right.$$

$$\left. \exists H \in G(5, 4, 4) : h_i \leq H \right\}$$

because $b_{12} \ge 1$ for all missing entries

thank you for your attention

