ALCOMA 15

Algebraic Combinatorics and Applications

Kloster Banz, March 15–20, 2015

Maximal Partial Symplectic Spreads over Small Fields

Markus Grassl

Markus.Grassl@mpl.mpg.de

www.codetables.de

NATURWISSENSCHAFTLICHE FAKULTÄT

MAX PLANCK INSTITUTE

for the science of light

March 19, 2015

Overview

- Mutually Unbiased Bases (MUBs) and symplectic spreads
- Unextendible MUBs
- Characterization of symplectic spreads
- Small maximal partial spread in large dimension
- Constructions & search techniques
- Computational results

Mutually Unbiased Bases (MUBs)

- orthogonal bases $\mathcal{B}^j := \{ |\psi^j_k
 angle \colon k = 1, \dots, d \} \subset \mathbb{C}^d$
- basis states are "mutually unbiased":

$$|\langle \psi_k^j | \psi_m^l \rangle|^2 = \begin{cases} 1/d & \text{ for } j \neq l, \\ \delta_{k,m} & \text{ for } j = l. \end{cases}$$

- at most d + 1 MUBs in dimension d
- constructions for d+1 MUBs only known for prime powers $d=p^e$
- lower bound [Klappenecker & Rötteler, quant-ph/0309120]:

$$N(m \cdot n) \ge \min\{N(m), N(n)\} \ge 3$$
$$N(p_1^{e_1} p_2^{e_2} \dots p_{\ell}^{e_{\ell}}) \ge \min_i p_i^{e_i} + 1$$

MUBs and Unitary Error Bases

[S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, & F. Vatan, quant-ph/0103162]

Theorem:

There exists k MUBs in dimension d if and only if there are k(d-1) traceless, mutually orthogonal matrices $U_{j,t} \in U(d, \mathbb{C})$ that can be partitioned into k sets of commuting matrices:

 $\mathcal{B} = \mathcal{C}_1 \cup \ldots \cup \mathcal{C}_k$, where $\mathcal{C}_j \cap \mathcal{C}_l = \emptyset$ and $|\mathcal{C}_j| = k - 1$

Each of the k orthogonal bases is given by the common eigenstates of the commuting matrices in one class C_j .

Ansatz:

Use the matrices $X^{\alpha}Z^{\beta}$ of the generalized Pauli group

Generalized Pauli Group

Error Basis

[A. Ashikhmin & E. Knill, Nonbinary quantum stabilizer codes, IEEE-IT **47**, pp. 3065–3072 (2001)]

$$\begin{array}{lll} X^{\alpha} & := & \displaystyle\sum_{x \in \mathbb{F}_{q}} |x + \alpha \rangle \langle x| & \text{ for } \alpha \in \mathbb{F}_{q} \\ \\ \text{and} & Z^{\beta} & := & \displaystyle\sum_{z \in \mathbb{F}_{q}} \omega^{\operatorname{tr}(\beta z)} |z \rangle \langle z| & \text{ for } \beta \in \mathbb{F}_{q} \ (\omega := \omega_{p} = \exp(2\pi i/p)) \end{array}$$

generalized Pauli Group \mathcal{P}_n

$$\omega^{\gamma}(X^{\alpha_1}Z^{\beta_1}) \otimes (X^{\alpha_2}Z^{\beta_2}) \otimes \ldots \otimes (X^{\alpha_n}Z^{\beta_n}) =: \omega^{\gamma}X^{\alpha}Z^{\beta},$$

where $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{F}_q^n$, $\gamma \in \mathbb{F}_p$.

quotient group:

$$\overline{\mathcal{P}}_n := \mathcal{P}_n / \langle \omega I \rangle \cong \left(\mathbb{F}_q \times \mathbb{F}_q \right)^n \cong \mathbb{F}_q^n \times \mathbb{F}_q^n$$

Abelian Subgroups & Symplectic Spreads

Abelian subgroup S:

$$(\boldsymbol{\alpha},\boldsymbol{\beta})\star(\boldsymbol{\alpha}',\boldsymbol{\beta}')=0$$
 for all $\omega^{\gamma}(X^{\boldsymbol{\alpha}}Z^{\boldsymbol{\beta}})$, $\omega^{\gamma'}(X_{\boldsymbol{\alpha}'}Z_{\boldsymbol{\beta}'})\in\mathcal{S}$,

symplectic inner product \star on $\mathbb{F}_q^n \times \mathbb{F}_q^n$:

$$(\boldsymbol{v}, \boldsymbol{w}) \star (\boldsymbol{v}', \boldsymbol{w}') := \boldsymbol{v} \cdot \boldsymbol{w}' - \boldsymbol{v}' \cdot \boldsymbol{w} = \sum_{i=1}^{n} v_i w_i' - v_i' w_i$$

maximal Abelian subgroups \iff totally (symplectic) isotropic subspaces of \mathbb{F}_q^{2n} (modulo the center of \mathcal{P}_n)

subgroups intersect in center \iff symplectic spaces intersect trivially

 $k \text{ MUBs} \iff \text{symplectic spread of size } k$

Unextendible MUBs from Pauli matrices

[P. Mandayam, S. Bandyopadhyay, M. Grassl, W. K. Wootters, arXiv:1302.3709] incomplete partitioning of two-qubit Pauli matrices:

$$\mathcal{C}_{1} = \{ I \otimes X, \ X \otimes I, \ X \otimes X \} \qquad G_{i} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
$$\mathcal{C}_{2} = \{ I \otimes Z, \ Z \otimes I, \ Z \otimes Z \} \qquad G_{2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\mathcal{C}_{3} = \{ X \otimes Z, Z \otimes X, Y \otimes Y \} \qquad G_{3} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

This gives a set of three (real) MUBs that is strongly unextendible.

In general:

A set of MUBs from a partitioning of unitary operators is *weakly unextendible* if one cannot add another eigenbasis of those unitary operators.

Unextendible MUBs

A set of mutually unbiased bases $\{\mathcal{B}^{(1)}, \ldots, \mathcal{B}^{(m)}\}\$ is *unextendible* if there is no other basis that is unbiased with respect to all bases $\mathcal{B}^{(j)}$.

If there is not even a single unbiased^a vector, the set of MUBs is called *strongly unextendible*.

A set of mutually unbiased bases constructed via eigenbases of generalized Pauli matrices is *weakly unextendible* if no other eigenbasis of Pauli matrices can be added.

 \implies maximal partial spreads yield weakly unextendible MUBs

^aA vector $|\phi\rangle$ is unbiased to a set of vectors $|\psi_i\rangle$ if $|\langle \phi |\psi_i\rangle| = \text{const.}$

Symplectic Spreads

totally isotropic subspace:

- subspace $S_i \leq \mathbb{F}_q^{2n}$ such that $S_i = S_i^{\star}$
- $\bullet \,$ symplectic self-dual code $[2n,n,d]_q \,\, {\rm or} \,\, (n,q^n,d)_{q^2}$
- quantum code $\llbracket n, 0, d \rrbracket_q$

symplectic spread

collection of totally isotropic subspaces S_i with trivial intersection:

- $S_i \cap S_j = \{\mathbf{0}\} \ (i \neq j)$
- $S_i + S_j = \mathbb{F}_q^{2n} \ (i \neq j)$

maximal partial spread

collection of subspaces S_i that cannot be enlarged

Some Known Results

- maximal size of a (complete) symplectic spread in \mathbb{F}_q^{2n} is $q^n + 1$
- complete spreads exists for all $q \mbox{ and } n$
 - -n=1: take the lines through the origin in the affine space \mathbb{F}_q^2
 - -n > 1: expand the spread in $\mathbb{F}_{q^n}^2$ using a symmetric basis of \mathbb{F}_{q^n} as matrix algebra over \mathbb{F}_q
- maximal partial symplectic spreads have mainly been studied for the case n = 2 using generalized quadrangles (e.g., by the group in Ghent)

I did not find much information on maximal partial symplectic spreads for n > 2.

Defining Conditions for Symplectic Spreads

Normal Form of Generators:

$$G_{\infty} = (0 | I)$$
 or $G_i = (I | A_i), A_i = A_i^t$ (symmetric)

Proof:

- transitive action of symplectic group allows choice of G_∞
- joint row span of G_{∞} and G_i is the full space $\Longrightarrow G_i = (I|A_i)$
- $S_i = S_i^{\star} \Longrightarrow A_i$ is symmetric

Defining Conditions for Symplectic Spreads:

$$S_i + S_j = \mathbb{F}_q^{2n} \iff \det \left(\begin{array}{c|c} I & A_i \\ I & A_j \end{array} \right) \neq 0 \iff \det(A_i - A_j) \neq 0$$
$$\iff \left(\det(A_i - A_j) \right)^{q-1} = 1$$

Smallest Maximal Partial Spread

[M. Cimráková, S. De Winter, V. Fack, and L. Storme, 2007]

Theorem There is a maximal partial symplectic spread of size q + 1 for $q = 2^m$ and n = 2, and there is no smaller maximal partial symplectic spread.

Proof (maximality):

generators:
$$G_{\infty} = \begin{pmatrix} 0 & 0 & | & 1 & 0 \\ 0 & 0 & | & 0 & 1 \end{pmatrix}$$
 and $G_{\alpha} = \begin{pmatrix} 1 & 0 & | & 0 & \alpha \\ 0 & 1 & | & \alpha & 0 \end{pmatrix}$, $\alpha \in \mathbb{F}_q$
additional generator $G' = \begin{pmatrix} 1 & 0 & | & x_{00} & x_{01} \\ 0 & 1 & | & x_{01} & x_{11} \end{pmatrix}$
condition: det $\begin{pmatrix} x_{00} & x_{01} - \alpha \\ x_{01} - \alpha & x_{11} \end{pmatrix} = x_{00}x_{11} + x_{01}^2 + \alpha^2 \neq 0$ for all $\alpha \in \mathbb{F}_q$

Small Maximal Partial Spreads

Theorem For q an even prime power, the expansion of the smallest maximal partial spread of size $q^m + 1$ in $\mathbb{F}_{q^m}^4$ yields a maximal partial spread in \mathbb{F}_q^{4m} .

Proof (outline)

Let $\Gamma \in \mathbb{F}_q^{m \times m}$ be a symmetric matrix corresponding to a primitive element γ of \mathbb{F}_{q^m} .

expansion of the generators:

$$G_{\infty} = \begin{pmatrix} 0 & 0 & | I & 0 \\ 0 & 0 & | 0 & I \end{pmatrix}, \quad G_0 = \begin{pmatrix} I & 0 & | 0 & 0 \\ 0 & I & | 0 & 0 \end{pmatrix}, \quad \text{and}$$
$$G_{\gamma^j} = \begin{pmatrix} I & 0 & | 0 & \Gamma^j \\ 0 & I & | \Gamma^j & 0 \end{pmatrix}, \quad j = 0, \dots, q^m - 2$$

Small Maximal Partial Spreads (cont.)

Lemma

Over the big field
$$\mathbb{F}_{q^m}$$
, the matrix $\begin{pmatrix} 0 & \Gamma^j \\ \Gamma^j & 0 \end{pmatrix}$ is similar to
$$A(\alpha) = \begin{pmatrix} \alpha & & & \\ & \alpha^q & & \\ & & \ddots & \\ & & \alpha^{q^{m-1}} & & \end{pmatrix}, \quad \alpha = \gamma^j$$

Small Maximal Partial Spreads (cont.)

additional generator

$$G' = \left(\begin{array}{c|c} I & X \end{array} \right)$$
, where X is a symmetric $2m \times 2m$ matrix

conditions

$$\det X \neq 0 \text{ and } \det \left(X - \begin{pmatrix} 0 & \Gamma^j \\ \Gamma^j & 0 \end{pmatrix} \right) \neq 0 \text{ for } j = 0, \dots, q - 2$$
$$\iff \det \left(\tilde{X} - A(\alpha) \right) \neq 0 \text{ for } \alpha \in \mathbb{F}_{q^m}$$
$$\iff \left(\det \left(\tilde{X} - A(\alpha) \right) \right)^{q-1} = 1 \text{ for } \alpha \in \mathbb{F}_{q^m}$$

Theorem For $q = 2^{m_0}$, a symmetric matrix \tilde{X} , and $A(\alpha)$ as above:

$$\sum_{\alpha \in \mathbb{F}_{q^m}} \left(\det \left(\tilde{X} - A(\alpha) \right) \right)^{q-1} = 1.$$

 \implies The expanded spread over the subfield is maximal.

Construction I: Subfield Expansion

Take a maximal partial spread in $\mathbb{F}_{q^m}^{2n}$ and expand it to obtain a partial spread in \mathbb{F}_q^{2mn} .

Problem:

A maximal partial spread over an extension field need not remain maximal when represented over a subfield:

•
$$q = 4 = 2^2$$
, $n = 3$: size 17

•
$$q = 9 = 3^2$$
, $n = 2$: size 22, 23, 24, 25, and 29

Moreover, this does not yield maximal partial spreads in \mathbb{F}_q^{2n} , n prime.

 \implies Find criteria to decide when the expansion remains to be maximal.

Construction II: Extension

Given generators

$$G_{\infty} = \left(\begin{array}{c|c} 0 & I \end{array} \right), \text{ and } G_i = \left(\begin{array}{c|c} I & A_i \end{array} \right)$$

find a symmetric matrix X with

$$\det(X - A_i) \neq 0 \iff \left(\det(X - A_i)\right)^{q-1} = 1$$

 \Longrightarrow system of polynomial equations for the symmetric matrix X

- \implies compute Gröbner basis
- \implies proves maximality or provides candidates for extension

Exhaustive & Heuristic Search

exhaustive search

- graph \mathcal{G} with all symmetric matrices as vertices
- edge between A_i and A_j iff $det(A_i A_j) \neq 0$
- maximal cliques in G of size m correspond to maximal partial spreads of size m + 1 (use cliquer)

heuristic search

- start with a spread $\mathcal{S} = \{S_{\infty}, S_1, \dots, S_m\}$
- pick a symmetric matrix A such that $S' \notin S$, S' the row span of $(I \mid A)$
- keep those $S_i \in \mathcal{S}$ that intersect trivially with S'
- compute maximal extension of this partial spread

Computational Results

q^n	q	n	size	remark
4	2	2	3,5	complete
8	2	3	5,9	complete
16	2	4	5, 8, 9, 11, 13, 17	complete
16	4	2	5, 9, 11, 13, 17	complete
32	2	5	$9, \ldots, 15, 17, 33$	
64	2	6	$9, 13, \ldots, 47, 49, 51, 57, 65$	
64	4	3	$17, \ldots, 43, 49, 65$	
64	8	2	$9, 17, 21, \ldots, 47, 49, 51, 57, 65$	
128	2	7	$21, \ldots, 31, 33, 35, 37, 39, 45, 49, 53, 57, 61, 65, 129$	
256	2	8	$17, 28, \ldots, 205, 209, 211, 213, 214, 215, 225, 227, 241, 257$	
256	4	4	$17, 33, 35, \ldots, 205, 209, 211, 213, 214, 215, 225, 227, 241, 257$	
256	16	2	$17, 33, 46, \ldots, 205, 209, 211, 213, 214, 215, 225, 227, 241, 257$	new values

Computational Results (cont.)

q^n	q	n	size	remark
9	3	2	5, 8, 10	complete
27	3	3	$10,\ldots,20,28$	complete
81	3	4	$18, \ldots, 68, 70, 73, 74, 82$	
81	9	2	$22, \ldots, 68, 70, 73, 74, 82$	
243	3	5	$32, \ldots, 120, 123, 154, 163, 244$	
25	5	2	$13, \ldots, 20, 22, 24, 26$	complete
125	5	3	$27, \ldots, 90, 101, 126$	
49	7	2	$14, 17, \ldots, 42, 44, 48, 50$	
121	11	2	$28, \ldots, 106, 109, 110, 112, 120, 122$	new values
169	13	2	$40, \ldots, 140, 145, 146, 148, 158, 170$	new values
289	17	2	$67, \ldots, 238, 241, \ldots, 248, 257, 258, 260, 274, 290$	new values
361	19	2	$82, \ldots, 302, 307, \ldots, 314, 325, 326, 328, 344, 362$	new values

Conclusion & Outlook

- subfield expansion of spreads from larger fields
- computational results for spreads over small fields in non-quadrangle situation
- small spread of size $2^m + 1$ in \mathbb{F}_2^{4m} , conjectured to be of minimal size

Further directions

- Use geometry for constructions and proofs.
- Find bounds on the smallest/largest incomplete maximal partial spreads.
- Find spreads such that the corresponding set of MUBs is unextendible. \implies [András Szántó, arXiv:1502.05245] using matrix algebras: $p^2 - p + 2$ strongly unextendible MUBs for $d = p^2$, $p \equiv 3 \mod 4$