Constructions of Subspace Codes

Heide Gluesing-Luerssen

University of Kentucky

ALCOMA15, Kloster Banz

^{*}Joint work Carolyn Troha.

Subspace Codes

A Linkage Construction

Construction of Partial Spreads

Subspace Codes

2 A Linkage Construction

3 Construction of Partial Spreads

Subspace Codes

Definition (Kötter/Kschischang '08 and some precursors)

- A subspace code of length n is a collection of subspaces in \mathbb{F}^n . The codewords are thus subspaces.
- If all subspaces have the same dimension, the code is a constant dimension code.

Random network coding:

- Packets (= vectors in \mathbb{F}^n) sent through a network
- Mixing at the nodes: linear combinations with unknown coefficients
- Packets are not preserved during the transmission
- Subspaces generated by packets are preserved (if no errors)

Subspace Distance

Definition

• The subspace distance of subspaces $\mathcal{U}, \mathcal{V} \leq \mathbb{F}^n$ is

$$\mathsf{d}_\mathsf{S}(\mathcal{U},\mathcal{V}) = \mathsf{dim}(\mathcal{U}) + \mathsf{dim}(\mathcal{V}) - 2\,\mathsf{dim}(\mathcal{U}\cap\mathcal{V}).$$

ullet The subspace distance of a subspace code ${\mathcal C}$ is

$$\mathsf{d}_\mathsf{S}(\mathcal{C}) = \mathsf{min} \{ \mathsf{d}_\mathsf{S}(\mathcal{U}, \mathcal{V}) \mid \mathcal{U}, \, \mathcal{V} \in \mathcal{C}, \, \mathcal{U} \neq \mathcal{V} \}.$$

- The larger the intersection, the closer the codewords.
- ullet d_S is a metric on the space of all subspaces of \mathbb{F}^n .

Goal:

Construct large subspace codes with large distance and efficient decoding.

Rank-Metric Codes and their Liftings

Consider $\mathbb{F}^{k \times m}$ endowed with the rank metric

$$d_R(A, B) := rank (A - B)$$
 for all $A, B \in \mathbb{F}^{k \times m}$.

Definition

• Rank-metric code with rank distance $d_R(\mathcal{M})$: subspace \mathcal{M} of $\mathbb{F}^{k \times m}$ where

$$\mathsf{d}_\mathsf{R}(\mathcal{M}) := \mathsf{min} \{ \mathsf{d}_\mathsf{R}(A,B) \mid A,\, B \in \mathcal{M},\, A \neq B \}.$$

- \mathcal{M} is an **MRD code** if $|\mathcal{M}| = q^{m(k-d+1)}$ (here $k \leq m$).
- Lifted rank-metric code:

$$C = \{ \text{im}(I \mid M) \mid M \in M \}, \text{ subspace code of length } k + m.$$

Then $d_S(\mathcal{C}) = 2d_R(\mathcal{M})$.

Subspace Code Constructions

- Use of rank-metric codes and Ferrers diagrams: Kötter/Kschischang '08, Silva/Kschischang/Kötter '08, Etzion/Silberstein '09, Khaleghi/Silva/Kschischang '09, Silberstein/Etzion '11, ...
- Computer search for codes with prescribed automorphism group: Kohnert/Kurz '08, Braun/Reichelt '12, Braun et al. '13
- (Partial) spread codes:
 Etzion/Vardy '11, Gorla/Manganiello/Rosenthal '12,
 Gorla/Ravagnani '14
- Cyclic codes: Kohnert/Kurz '08, Etzion/Vardy '11
- Cyclic orbit codes:
 Rosenthal/Trautmann et al. '10 '14, G_I /Morrison/Troha '14
- ...

Subspace Codes

2 A Linkage Construction

3 Construction of Partial Spreads

Linkage Codes

Theorem

For i=1,2 let C_i be (n_i, k, d_i) -constant-dimension codes with sets of representing matrices $\mathcal{M}_i \subseteq \mathbb{F}^{k \times n_i}$.

Let $\mathcal{C}_R \subseteq \mathbb{F}^{k \times n_2}$ be a rank-metric code with rank distance $\mathsf{d}_\mathsf{R}(\mathcal{C}_R) = d_R$.

Define the linkage code

$$\mathcal{C}_1 *_{\mathcal{C}_R} \mathcal{C}_2 := \tilde{\mathcal{C}}_1 \cup \tilde{\mathcal{C}}_2,$$

where

$$\tilde{\mathcal{C}}_1 = \{ \operatorname{im} \left(\begin{array}{c|c} U_1 & M \end{array} \right) \mid U_1 \in \mathcal{M}_1, M \in \mathcal{C}_R \}
\tilde{\mathcal{C}}_2 = \{ \operatorname{im} \left(0_{k \times n_1} | U_2 \right) \mid U_2 \in \mathcal{M}_2 \}.$$

Then $\mathcal{C}_1 *_{\mathcal{C}_R} \mathcal{C}_2$ is a $(n_1 + n_2, k, d)$ -code, where $d = \min\{d_1, d_2, 2d_R\}$, and $|\mathcal{C}_1 *_{\mathcal{C}_R} \mathcal{C}_2| = |\mathcal{C}_1| \cdot |\mathcal{C}_R| + |\mathcal{C}_2|$.

Example: dimension 3, distance 4, length ≥ 12 over \mathbb{F}_2

- Use for C_R an MRD code of rank distance 2
- Use the largest codes of length 6 or 7, i.e., $|\mathcal{C}_1|=77$ and $|\mathcal{C}_2|=329$ (Kohnert/Kurz '08, Braun/Reichelt '14, Honold/Kiermaier/Kurz '14)

n	n_1	<i>n</i> ₂	$\mathcal{C}_1 *_{\mathcal{C}_R} \mathcal{C}_2$	ML	MML	Largest Known
12	6	6	315, 469	298, 139	305, 324	385, 515
13	7	6	1, 347, 661	1, 192, 587	1, 221, 296	1,597,245
14	7	7	5, 390, 665	4,770,411	4, 885, 184	5, 996, 178

ML=Multilevel Construction (Etzion/Silberstein '09)

$$\label{eq:mml} \begin{split} \mathsf{MML} &= \mathsf{Modified} \ \mathsf{Multilevel} \ \mathsf{Construction} \ (\mathsf{Trautmann}/\mathsf{Rosenthal} \ '10, \\ \mathsf{Etzion}/\mathsf{Silberstein} \ '13) \end{split}$$

Largest Known (Braun/Reichelt '14: Sophisticated Computer Search)

Subspace Codes

2 A Linkage Construction

3 Construction of Partial Spreads

Partial Spreads

Definition

- Partial k-spread in \mathbb{F}^n : constant-dimension code in \mathbb{F}^n of dimension k and distance 2k (all subspaces intersect trivially).
- k-spread in \mathbb{F}^n : A partial k-spread where the subspaces cover \mathbb{F}^n .

Remark

k-spreads in \mathbb{F}^n exist iff $k \mid n$. They have cardinality $\frac{q^n-1}{a^k-1}$.

Examples of k-spreads

- ullet Orbit of \mathbb{F}_{q^k} in \mathbb{F}_{q^n} under the natural action of $\mathbb{F}_{q^n}^*$.
- Desarguesian spread: $(\mathbb{F}_{a^k}^m \setminus \{0\})/\mathbb{F}_{a^k}^*$, where km = n.

Partial Spreads

Then

Theorem (Hong/Patel '72, Beutelspacher '75)

Let $\mu(n,k)$ be the largest possible cardinality of a partial k-spread in \mathbb{F}^n .

$$\mu(n,k) \ge \underbrace{\frac{q^n - q^c}{q^k - 1} - q^c + 1}_{\text{def}}, \text{ where } c \equiv n \text{ (mod } k).$$

=:m(n,k)

with equality if $c \in \{0, 1\}$.

Constructing Partial Spreads of Size m(n, k) via Linkage

Theorem

Let $n = lk + n_2$, where $l \ge 1$ and $n_2 \ge k$ and let

- C_1 be a k-spread in \mathbb{F}^{lk} ,
- C_2 be a partial k-spread in \mathbb{F}^{n_2} ,
- C_R be a linear MRD code in $\mathbb{F}^{k \times n_2}$ with rank distance k.

Set $\mathcal{C} := \mathcal{C}_1 *_{\mathcal{C}_R} \mathcal{C}_2$. Then \mathcal{C} is a partial k-spread and

- If $|C_2| = m(n_2, k)$, then |C| = m(n, k).
- If C_2 is a maximal partial k-spread, then so is C.

Examples of the construction

- $n = n_1 + n_2$, where $n_2 = k + c$ and $n_1 = lk$.
- Etzion/Vardy '11: $C_1 = \text{orbit code spread in } \mathbb{F}^{n_1} \text{ and } |C_2| = 1.$
- ullet Gorla/Ravagnani '14: $\mathcal{C}_1=$ Desarguesian spread in \mathbb{F}^{n_1} and $|\mathcal{C}_2|=1$.

Optimal Partial 3-Spreads over \mathbb{F}_2 via Linkage

Theorem (El-Zanati et al. '10)

For q = 2, k = 3, and $n \ge 6$

$$\mu(n,3) = \frac{2^n - 2^c}{7} - c = \begin{cases} m(n,3), & \text{if } c = 0,1, \\ m(n,3) + 1, & \text{if } c = 2. \end{cases}$$

El-Zanati et al. present an optimal partial 3-spread in \mathbb{F}_2^8 (size = 34).

Theorem

Let
$$n \ge 10$$
 and write $n = 3l + n_2$ for some $l \ge 1$ and $n_2 \in \{6, 7, 8\}$. Let

- C_1 be a 3-spread in \mathbb{F}_2^{3l} ,
- ullet \mathcal{C}_2 be an optimal partial 3-spread in $\mathbb{F}_2^{n_2}$,
- C_R be an MRD code in $\mathbb{F}_2^{3 \times n_2}$ with rank distance 3.

Then $C_1 *_{C_R} C_2$ is an optimal partial 3-spread in \mathbb{F}_2^n .

Subspace Codes

2 A Linkage Construction

3 Construction of Partial Spreads

Theorem

- For i = 1, 2 let $n_i \ge k$ and let $\mathcal{M}_i \subseteq \mathbb{F}^{k \times n_i}$ be linear MRD codes with rank distance d.
- Let $C_3 = C(\mathcal{M}_3)$ and $C_4 = C(\mathcal{M}_4)$ be subspace codes with distance 2d and representing matrices $\mathcal{M}_3 \subseteq \mathbb{F}^{k \times n_1}$, $\mathcal{M}_4 \subseteq \mathbb{F}^{k \times n_2}$.

Then the code $C = C' \cup C'' \cup C'''$, where

$$\begin{split} \mathcal{C}' &= \{ \text{im} \left(\begin{array}{ccc} I_k & | & M_1 & | & M_2 \end{array} \right) \mid M_1 \in \mathcal{M}_1, \, M_2 \in \mathcal{M}_2 \}, \\ \mathcal{C}'' &= \{ \text{im} \left(0_{k \times k} \mid M \mid 0_{k \times n_2} \right) \mid M \in \mathcal{M}_3 \}, \\ \mathcal{C}''' &= \{ \text{im} \left(0_{k \times k} \mid 0_{k \times n_1} \mid M \right) \mid M \in \mathcal{M}_4 \}, \end{split}$$

has length $k+n_1+n_2$, distance 2d, and size $q^{(n_1+n_2)(k-d+1)}+|\mathcal{M}_3|+|\mathcal{M}_4|$. Decoding reduces to decoding w.r.t. \mathcal{C}_3 , \mathcal{C}_4 and the two lifted MRD codes.

 $\mathcal{C}' \cup \mathcal{C}'' \cup \mathcal{C}'''$ as well as $\mathcal{C}' \cup \mathcal{C}''$ and $\mathcal{C}' \cup \mathcal{C}'''$ are linkage codes.

Theorem

- For i = 1, 2 let $n_i \ge k$ and let $\mathcal{M}_i \subseteq \mathbb{F}^{k \times n_i}$ be linear MRD codes with rank distance d.
- Let $C_3 = C(\mathcal{M}_3)$ and $C_4 = C(\mathcal{M}_4)$ be subspace codes with distance 2d and representing matrices $\mathcal{M}_3 \subseteq \mathbb{F}^{k \times n_1}$, $\mathcal{M}_4 \subseteq \mathbb{F}^{k \times n_2}$.

Then the code $\mathcal{C} = \mathcal{C}' \cup \mathcal{C}'' \cup \mathcal{C}'''$, where

$$\begin{split} \mathcal{C}' &= \{ \text{im} \left(\begin{array}{c|c} I_k & M_1 & M_2 \end{array} \right) \mid M_1 \in \mathcal{M}_1, \ M_2 \in \mathcal{M}_2 \}, \\ \mathcal{C}'' &= \{ \text{im} \left(0_{k \times k} \mid M \mid 0_{k \times n_2} \right) \mid M \in \mathcal{M}_3 \}, \\ \mathcal{C}''' &= \{ \text{im} \left(0_{k \times k} \mid 0_{k \times n_1} \mid M \right) \mid M \in \mathcal{M}_4 \}, \end{split}$$

has length $k+n_1+n_2$, distance 2d, and size $q^{(n_1+n_2)(k-d+1)}+|\mathcal{M}_3|+|\mathcal{M}_4|$. Decoding reduces to decoding w.r.t. \mathcal{C}_3 , \mathcal{C}_4 and the two lifted MRD codes.

 $\mathcal{C}' \cup \mathcal{C}'' \cup \mathcal{C}'''$ as well as $\mathcal{C}' \cup \mathcal{C}''$ and $\mathcal{C}' \cup \mathcal{C}'''$ are linkage codes.

Theorem

- For i = 1, 2 let $n_i \ge k$ and let $\mathcal{M}_i \subseteq \mathbb{F}^{k \times n_i}$ be linear MRD codes with rank distance d.
- Let $C_3 = C(\mathcal{M}_3)$ and $C_4 = C(\mathcal{M}_4)$ be subspace codes with distance 2d and representing matrices $\mathcal{M}_3 \subseteq \mathbb{F}^{k \times n_1}$, $\mathcal{M}_4 \subseteq \mathbb{F}^{k \times n_2}$.

Then the code $C = C' \cup C'' \cup C'''$, where

$$\begin{split} \mathcal{C}' &= \{ \text{im} \left(\begin{array}{c|c} I_k & M_1 & M_2 \end{array} \right) \mid M_1 \in \mathcal{M}_1, \ M_2 \in \mathcal{M}_2 \}, \\ \mathcal{C}'' &= \{ \text{im} \left(0_{k \times k} \mid M \mid 0_{k \times n_2} \right) \mid M \in \mathcal{M}_3 \}, \\ \mathcal{C}''' &= \{ \text{im} \left(0_{k \times k} \mid 0_{k \times n_1} \mid M \right) \mid M \in \mathcal{M}_4 \}, \end{split}$$

has length $k+n_1+n_2$, distance 2d, and size $q^{(n_1+n_2)(k-d+1)}+|\mathcal{M}_3|+|\mathcal{M}_4|$. Decoding reduces to decoding w.r.t. \mathcal{C}_3 , \mathcal{C}_4 and the two lifted MRD codes.

 $\mathcal{C}' \cup \mathcal{C}'' \cup \mathcal{C}'''$ as well as $\mathcal{C}' \cup \mathcal{C}''$ and $\mathcal{C}' \cup \mathcal{C}'''$ are linkage codes.

Theorem

$$C' = \{ \operatorname{im} (I_k \mid M_1 \mid M_2) \mid M_1 \in \mathcal{M}_1, M_2 \in \mathcal{M}_2 \},$$

$$C'' = \{ \operatorname{im} (0_{k \times k} \mid M \mid 0_{k \times n_2}) \mid M \in \mathcal{M}_3 \},$$

$$C''' = \{ \operatorname{im} (0_{k \times k} \mid 0_{k \times n_1} \mid M) \mid M \in \mathcal{M}_4 \},$$

Let $\mathcal{V} = \operatorname{im} (V_0 \mid V_1 \mid V_2) \subseteq \mathbb{F}^n$ be a K-dimensional received word with $d_S(\mathcal{V}, \mathcal{C}) \leq (2d-1)/2$.

Then exactly one of the following situations occurs.

- $\frac{\operatorname{rank}(V_0) > K/2}{U = \operatorname{im}(I \mid M_1 \mid M_2)}$, where $\operatorname{d}_S(\operatorname{im}(I \mid M_i), \operatorname{im}(V_0 \mid V_i)) \leq (2d-1)/2$.
- $\frac{\operatorname{rank} (V_0 \mid V_2) < K/2}{\operatorname{given}} = \operatorname{im} (0 \mid M \mid 0)$, where $\operatorname{d}_S(\operatorname{im} (M), \operatorname{im} (V_1)) \le (2d-1)/2$.
- $\frac{\operatorname{rank}(V_0 \mid V_1) < K/2}{\operatorname{given}}$ by $\mathcal{U} = \operatorname{im}(0 \mid 0 \mid M)$, where $\operatorname{d}_S(\operatorname{im}(M), \operatorname{im}(V_2)) \le (2d-1)/2$.

Thank You!