LOCALLY REPAIRABLE CODES THROUGH ALMOST UNIFORM MATROIDS

Ragnar Freij
Aalto University, Finland
ragnar.freij@aalto.fi

ALCOMA 19.3.2015

Based on joint work with T. Ernvall, C. Hollanti och T. Westerbäck.

OUTLINE

- Perspectives and a cute picture of a cat
- Almost affine codes and matroids.
- Locally repairable codes and matroid invariants.
- Singleton bounds and matroid operations.

PERSPECTIVES: A HECK OF A LOT OF DATA!

- EMC 2011: $1.8 * 10^{21}$ bytes (zettabytes?) of data stored world wide, doubled every two years.
- Challenges come from physical storage space, energy consumption, bandwidth, security...

PERSPECTIVES: A HECK OF A LOT OF DATA!

Facebook handles a million pictures a second at peak.

- NSA data centers use six million litres of water daily to cool their servers.
- Google used more than a million servers already in 2008¹.
- Data centers use about 2 per cent of all electricity world wide. Effective date storage affects the environment on a global scale.²

¹See http://www.datacenterknowledge.com.

²See the Greenpeace report: How clean is your cloud? □ → ◆ □ → ◆ □ → ◆ □ → □ → ○ □

PERSPECTIVES: A HECK OF A LOT OF DATA!

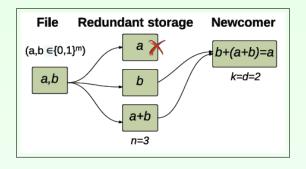
 Data centers worldwide experience about 3 million hours of outage yearly.

• Hur do we secure data from getting lost during these outages, without wasting valuable storage space?

DISTRIBUTED SYSTEMS (DSS)

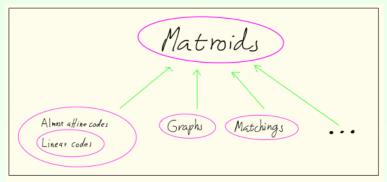
- In a DSS, a file is divided into k packets, and distributed over $n \ge k$ nodes in a network.
- If the content of no more than d-1 nodes are erased, or no more than $\frac{d-1}{2}$ nodes are corrupted, their content can be reconstructed.
- This setting is known as exact repair. One is also interested in functional repair, where only reconstructability of some DSS with the same parameters is required.

A TOY EXAMPLE VIA NETWORK CODING



MATROIDS

- A matroid is a combinatorial structure that captures and generalises notions of independence (for example linear independence, algebraic independence, or acyclicity in graphs).
- Applications in geometry, topology, combinatorial optimization, network theory and coding theory.



MATROIDS DEFINITION

• For a finite set E, let 2^E denote the set of subsets of E.

DEFINITION

 $M=(\rho,E)$ is a matroid with a rank function $\rho:2^E\to\mathbb{Z}$, if ρ has the following properties:

- (R1) $0 \le \rho(X) \le |X|$ for all $X \in 2^E$,
- (R2) If $X \subseteq Y \in 2^E$ then $\rho(X) \le \rho(Y)$,
- (R3) If $X, Y \in 2^E$ then $\rho(X) + \rho(Y) \ge \rho(X \cup Y) + \rho(X \cap Y)$.

MATROIDS Independent sets, circuits and duals

• A set $X \in 2^E$ is *independent* in M if $\rho(X) = |X|$, otherwise it is *dependent*.

Proposition (Alternative definition for topologists)

 $\mathcal{I} \subset E$ is the collection of independent sets of a matroid if and only if I is a pure simplicial complex, all of whose induced sub complexes are pure. The rank function is defined by $\rho: 2^E \to \mathbb{Z}$,

$$\rho(X) = \max_{Y \subseteq X, Y \in \mathcal{I}} |Y|.$$

• A third way to define matroids is via their set of bases.

- A dependent set X is a circuit if all proper subsets of X are independent.
- The *dual* of a matroid $M=(\rho,E)$ is a matroid $M^*=(\rho^*,E)$, where ρ^* is defined by:

$$\rho^*(X) = \rho(E \setminus X) + |X| - \rho(E)$$
, for all $X \in 2^E$.

MDS (MINIMUM DISTANCE SEPARABLE) CODES

THEOREM (SINGLETON)

For any code of length n, dimension k and minimum distance d, over an arbitrary alphabet \mathbb{A} , the inequality

$$d \le n - k + 1$$

holds.

MDS (MINIMUM DISTANCE SEPARABLE) CODES

THEOREM (SINGLETON)

For any code of length n, dimension k and minimum distance d, over an arbitrary alphabet \mathbb{A} , the inequality

$$d \le n - k + 1$$

holds.

- A code achieving equality in the Singleton bound is an MDS-code.
- Explicit (linear) constructions of MDS-codes exist over all alphabets $\mathbb{A} = \mathbb{F}_q$ where $|\mathbb{A}| = q \ge n$ is a prime power.

MDS (MINIMUM DISTANCE SEPARABLE) CODES

- A generic $n \times k$ matrix has every $k \times k$ -minor non-degenerate, so is the generator matrix of a code where every k nodes can reconstruct the code word. This implies that the code is MDS.
- The matroid M_C is the uniform matroid U_n^k .
- Existence of MDS codes becomes a question of whether generic matrices exist over your favourite field.

COOPERATIVE LOCALLY REPAIRABLE CODES

Gopalan et al., Oggier et al., and Papailiopoulos et al.

• C a code of length n, dimension k, rate k/n, minimum distance d.

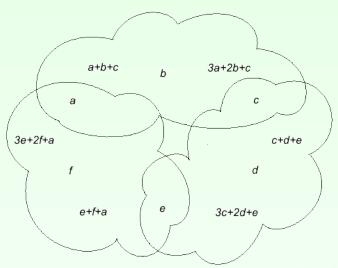
DEFINITION

An (r, δ) -cloud is a set F of nodes, such that for every $\delta - 1$ -tuple $x_1, \dots x_{\delta-1} \in F$, there are $y_1, \dots y_r \in F \setminus \{x_i\}$ such that $\{f(x_i)\}$ is a function of $\{f(y_i)\}$.

DEFINITION

 $\mathcal C$ is a *locally repairable code (LRC)* with parameters (n,k,d,r,δ) , if every node is contained in an (r,δ) -cloud.

EXAMPLE: A (12, 6, 4, 3, 3)-LRC



EXAMPLE: A (12, 6, 4, 3, 3)-LRC

SINGLETON BOUND FOR LRC

 The Singleton bound can be sharpened for locally repairable codes that are linear / almost affine (Prakash/Westerbäck et al., 2012/2014)

$$d_{min}(\mathcal{C}) \leq n-k+1-(\delta-1)\left(\left\lceil \frac{k}{r} \right\rceil-1\right).$$

We can also bound the rate

$$\operatorname{rate}(\mathcal{C}) = \frac{k}{n} \le \frac{r}{r + \delta - 1}.$$

SINGLETON BOUND FOR LRC

 The Singleton bound can be sharpened for locally repairable codes that are linear / almost affine (Prakash/Westerbäck et al., 2012/2014)

$$d_{min}(\mathcal{C}) \leq n-k+1-(\delta-1)\left(\left\lceil \frac{k}{r} \right\rceil-1\right).$$

• We can also bound the rate

$$\operatorname{rate}(\mathcal{C}) = \frac{k}{n} \le \frac{r}{r + \delta - 1}.$$

How do we construct LRC with equality? Using matroids!

TRANSLATION FROM LRC TO MATROIDS TAMO et al. (2013), WESTERBÄCK et al. (2014)

ullet Let ${\mathcal C}$ be almost affine, meaning

$$C|_{I} = |\mathbb{A}|^{\rho}(I)$$

for an integer $\rho(I)$, for every $I \subseteq [n]$.

- Then $(\rho, [n])$ is a (representable) matroid.
- The parameters (n, k, d, r, δ) can easily be generalised to arbitrary finite matroids:

TRANSLATION FROM LRC TO MATROIDS OUR CONTRIBUTIONS

- Let C be an almost affine code.
- The parameters $(n, k, d_{min}, r, \delta)$ can be read off from the associate matroid $M_C = (\rho_C, [n])$ as follows :
- $k = \rho_{\mathcal{C}}([n])$.
- $d = \min\{|X| : X \text{ cocircuit}\}.$
- F is a (r, δ) -cloud if and only if F is a minimal cyclic flat of rank $\leq r$ and corank $\geq \delta$.

TRANSLATION FROM LRC TO MATROIDS OUR CONTRIBUTIONS

- Any matroid is uniquely determined by the lattice of cyclic flats (which
 is a lattice), and the rank function restricted to the cyclic flats.
- An extremal $(n, k, d_{min}, r, \delta)$ -matroid has its lattice of cyclic flats generated by sets $\{F_i\}$ corresponding to the clouds, with

•
$$|F_i| - \rho(F_i) \geq \delta - 1$$

- $\rho(F_i) \geq r$
- $|\cup_i F_i| = k + \sum_i (|F_i| \rho(F_i))$
- If

$$\rho(\cup_{i\in I}F_i) < k, \rho(\cup_{j\in J}F_j) < k, \rho(\cup_{i\in I\cup J}F_i) = k,$$

then

$$|\bigcup_{i\in I\cup J}F_i|+\sum_{i\in I\cup I}(|F_i|-\rho(F_i))\geq k.$$

• Determining whether such set systems exist, is a boring tedious simple exercise in hypergraph theory.

TRANSLATION FROM LRC TO MATROIDS OUR CONTRIBUTIONS

The inequality

$$d(C) \leq n-k+1-(\delta-1)\left(\left\lceil \frac{k}{r}\right\rceil-1\right).$$

now holds for matroids in general.

• For all parameters (n, k, r, δ) , there is a matroid that satisfies

$$d(C) = n - k - (\delta - 1) \left(\left\lceil \frac{k}{r} \right\rceil - 1 \right).$$

• This is obtained as a disjoint union of copies of $U^r_{r+\delta-1}$, augmented with $d-\delta$ addictional elements.

TRANSLATION FROM LRC TO MATROIDS OUR CONTRIBUTIONS

Remember Singleton:

$$d(C) \leq n-k+1-(\delta-1)\left(\left\lceil \frac{k}{r}\right\rceil-1\right).$$

- We can characterise (using graphs of overlapping clouds) for exactly which values this can be improved to satisfy the Singleton bound with equality.
- n and k has to satisfy certain congruences modulo r, r+1 δ and $\delta-1$.
- Thomas will explain how these matroids can be constructed, and in fact be realized as codes.

