On some Menon designs and related structures

Dean Crnković Department of Mathematics University of Rijeka Croatia

ALCOMA 15, March 2015

A $t - (v, k, \lambda)$ design is a finite incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ satisfying the following requirements:

- $|\mathcal{P}| = v$
- 2 every element of \mathcal{B} is incident with exactly k elements of \mathcal{P} ,
- \blacksquare every t elements of \mathcal{P} are incident with exactly λ elements of \mathcal{B} .

Every element of ${\mathcal P}$ is incident with exactly $r=rac{\lambda(
u-1)}{
u-1}$ elements of \mathcal{P} . The number of blocks is denoted by b.

If $|\mathcal{P}| = |\mathcal{B}|$ (or equivalently k = r) then the design is called symmetric.

A **Hadamard matrix** of order m is a $(m \times m)$ matrix $H = (h_{i,i})$, $h_{i,j} \in \{-1,1\}$, satisfying $HH^T = H^TH = mI_m$, where I_m is an $(m \times m)$ identity matrix. A Hadamard matrix is **regular** if the row and column sums are constant.

The existence of a symmetric design with parameters (4n-1,2n-1,n-1) is equivalent to the existence of a Hadamard matrix of order 4n. Such a simmetric design is called a Hadamard design.

The existence of a symmetric design with parameters $(4u^2, 2u^2 - u, u^2 - u)$ is equivalent to the existence of a regular Hadamard matrix of order $4u^2$. Such symmetric designs are called Menon designs.

In 2006 there were just two values of $k \le 100$ for which the existence of a regular Hadamard matrix of order $4k^2$ was still in doubt, namely k = 47 and k = 79.

In 2007 T. Xia, M. Xia and J. Seberry presented the following result:

There exist regular Hadamard matrices of order $4k^2$ for k=47, 71, 151, 167, 199, 263, 359, 439, 599, 631, 727, 919, $5q_1, 5q_2N, 7q_3$, where q_1, q_2 and q_3 are prime power such that $q_1 \equiv 1 \pmod{4}$, $q_2 \equiv 5 \pmod{8}$ and $q_3 \equiv 3 \pmod{8}$, $N=2^a3^bt^2$, a,b=0 or 1, $t\neq 0$ is an arbitrary integer. (T. Xia, M. Xia and J. Seberry, Some new results of regular Hadamard matrices and SBIBD II, Australas. J. Combin. 37 (2007), 117–125.)

Let p and 2p-1 be prime powers and $p \equiv 3 \pmod{4}$. Then there exists a symmetric $(4p^2, 2p^2 - p, p^2 - p)$ design.

That proves that there exists a regular Hadamard matrix of order $4 \cdot 79^2 = 24964$

The smallest k for which the existence of a regular Hadamard matrix of order $4k^2$ is sill undecided is k=103.

Sketch of the proof:

Let p be a prime power, $p \equiv 3 \pmod{4}$ and F_p be a field with p elements. Then a $(p \times p)$ matrix $D = (d_{ii})$, such that

$$d_{ij} = \left\{ \begin{array}{ll} 1, & \text{if } (i-j) \text{ is a nonzero square in } F_p, \\ 0, & \text{otherwise.} \end{array} \right.$$

is an incidence matrix of a symmetric $(p, \frac{p-1}{2}, \frac{p-3}{4})$ design (Paley design). Let \overline{D} be an incidence matrix of a complementary symmetric design with parameters $(p, \frac{p+1}{2}, \frac{p+1}{4})$. Since D is a skew matrix, $D + I_p$ and $\overline{D} - I_p$ are incidence matrices of symmetric designs with parameters $(p, \frac{p+1}{2}, \frac{p+1}{4})$ and $(p, \frac{p-1}{2}, \frac{p-3}{4})$, respectively. (We say that a (0,1)-matrix X is **skew** if $X + X^t$ is a (0, 1)-matrix.)

Let q be a prime power, $q \equiv 1 \pmod{4}$, and $C = (c_{ii})$ be a $(q \times q)$ matrix defined as follows:

$$c_{ij} = \left\{ \begin{array}{ll} 1, & \text{if } (i-j) \text{ is a nonzero square in } F_q, \\ 0, & \text{otherwise.} \end{array} \right.$$

C is a symmetric matrix with zero diagonal.

(The set of nonzero squares in F_q is a partial difference set (Paley partial difference set). The matrices C, $C + I_a$, \overline{C} and $\overline{C} - I_a$ are developments of partial difference sets.

C and $\overline{C} - I_a$ are adjacency matrices of SRGs with parameters $(q, \frac{1}{2}(q-1), \frac{1}{4}(q-5), \frac{1}{4}(q-1)).)$

Put q = 2p - 1. Then $q \equiv 1 \pmod{4}$.

Let D, \overline{D} , C, \overline{C} be defined as above. The $(4p^2 \times 4p^2)$ matrix Mdefined as follows is the incidence matrix of a symmetric $(4p^2, 2p^2 - p, p^2 - p)$ design.

To prove that M is the incidence matrix of a symmetric $(4p^2, 2p^2 - p, p^2 - p)$ design, it is sufficient to show that

$$M \cdot J_{4p^2} = (2p^2 - p)J_{4p^2}$$

and

$$M \cdot M^T = (p^2 - p)J_{4p^2} + p^2I_{4p^2}.$$

If p and 2p-1 are primes, then $(Z_p:Z_{\frac{p-1}{2}}) imes (Z_{2p-1}:Z_{p-1})$ act as an automorphism group of the Menon design from Theorem 1, and the derived design of that design, with respect to the fixed block for an automorphism group $(Z_p:Z_{\frac{p-1}{2}})\times (Z_{2p-1}:Z_{p-1})$, is cyclic.

Corollary 1

Let p and 2p-1 be primes and $p \equiv 3 \pmod{4}$. Then there exists a cyclic $2-(2p^2-p, p^2-p, p^2-p-1)$ design having an automorphism group isomorphic to $(Z_p:Z_{\frac{p-1}{2}})\times (Z_{2p-1}:Z_{p-1}).$

Parameters of Menon designs belonging to the described series, for $p \leq 100$, are given below.

TABLE 1. Table of parameters for $p \le 100$

p	q = 2p - 1	$4p^2$	Menon Designs
3	5	36	(36,15,6)
7	13	196	(196,91,42)
19	37	1444	(1444,703,342)
27	53	2916	(2916,1431,702)
31	61	3844	(3844,1891,930)
79	157	24964	(24964,12403,6162)

Let p and 2p + 3 be prime powers and $p \equiv 3 \pmod{4}$. Further, let us put q = 2p + 3 and define the matrices D, C and M as in the proof of Theorem 1. Then $M + I_{4(p+1)^2}$ is the incidence matrix of a a symmetric $(4(p+1)^2, 2p^2 + 3p + 1, p^2 + p)$ design.

Corollary 2

Let p and 2p + 3 be primes and $p \equiv 3 \pmod{4}$. There exists a 1-rotational 2- $(2p^2 + 3p + 1, p^2 + p, p^2 + p - 1)$ design having an automorphism group isomorphic to $(Z_p:Z_{\frac{p-1}{2}})\times (Z_{2p+3}:Z_{p+1})$.

belonging to the described series, for $p \leq 100$, are given below.

TABLE 2. Table of parameters for $p \le 100$

p	q = 2p + 3	$4(p+1)^2$	Menon Designs
3	9	64	(64,28,12)
7	17	256	(256,120,56)
19	41	1600	(1600,780,380)
23	49	2304	(2304,1128,552)
43	89	7744	(7744,3828,1892)
47	97	9216	(9216,4560,2256)
67	137	18496	(18496,9180,4556)

For a prime power p, $p \equiv 3 \pmod{4}$, there is a Hadamard matrix of order p + 1 (from a Paley design with parameters $(p, \frac{p-1}{2}, \frac{p-3}{4}))$, hence there is a Hadamard matrix of order 2(p+1)(Kronecker product construction).

Since Bush-type Hadamard matrices are regular, the existence of regular Hadamard matrices of order $4(p+1)^2$, where p is a prime power and $p \equiv 3 \pmod{4}$, follows from H. Kharaghani's result from 1985. Therefore, Theorem 2 does not prove the existence of regular Hadamard matrices with these parameters.

Let K be a subset of positive integers. A **pairwise balanced design** $PBD(v, K, \lambda)$ is a finite incidence structure $(\mathcal{P}, \mathcal{B}, I)$, where \mathcal{P} and \mathcal{B} are disjoint sets and $I \subseteq \mathcal{P} \times \mathcal{B}$, with the following properties:

- 2 if an element of \mathcal{B} is incident with k elements of \mathcal{P} , then $k \in \mathcal{K}$;
- 3 every pair of distinct elements of \mathcal{P} is incident with exactly λ elements of \mathcal{B} .

The elements of the set \mathcal{P} are called points and the elements of the set \mathcal{B} are called blocks.

A 2- (v, k, λ) design is a $PBD(v, K, \lambda)$ with $K = \{k\}$.

Let p and q=2p-1 be prime powers, $p\equiv 3 \pmod 4$. We define the matrix M_1 as follows:

0	$j_{p\cdot q}^{T}$	0_q^T	$0_{p\cdot q}^T$
	$D\otimes (C+I_q)$		$D\otimes C$
Ĵp∙q	+ _	$j_p \otimes C$	_ +
	$(\overline{D}-I_p)\otimes\overline{C}$		$\overline{D}\otimes (\overline{C}-I_q)$
0_q	$j_p^T \otimes (\overline{C} - I_q)$	$0_{q \times q}$	$j_p^T \otimes \overline{C}$
	$(D+I_p)\otimes C$		$(\overline{D}-I_p)\otimes (C+I_q)$
$0_{p\cdot q}$	+	$j_p \otimes (C + I_q)$	+
	$(\overline{D}-I_p)\otimes(\overline{C}-I_q)$		$D \otimes \overline{C}$

and the matrix M_2 is defined in the following way:

	0	$j_{p\cdot q}^T$	0_q^T	$0_{p\cdot q}^T$
		$D\otimes (C+I_q)$		$D\otimes C$
l	$0_{p \cdot q}$	_ +	$j_p\otimes \overline{C}$	_ +
		$(\overline{D}-I_p)\otimes\overline{C}$		$\overline{D} \otimes (\overline{C} - I_q)$
	0_q	$j_p^T \otimes (\overline{C} - I_q)$	$0_{q \times q}$	$j_p^T \otimes \overline{C}$
l		$(D+I_p)\otimes C$		$(\overline{D}-I_p)\otimes(C+I_q)$
١	j̇ _{p∙q}	+	$j_p\otimes (\overline{C}-I_q)$	+
		$(\overline{D}-I_p)\otimes(\overline{C}-I_q)$		$D \otimes \overline{C}$

 M_1 and M_2 are incidence matrices of Menon designs with parameters $(4p^2, 2p^2 - p, p^2 - p)$.

A $\{0,\pm 1\}$ -matrix S is called a Siamese twin design sharing the entries of I, if S = I + K - L, where I, K, L are non-zero $\{0,1\}$ -matrices and both I+K and I+L are incidence matrices of symmetric designs with the same parameters. If I + K and I + Lare incidence matrices of Menon designs, then S is called a Siamese twin Menon design.

Siamese twin design

The incidence matrices M_1 and M_2 share the entries of

$$J = egin{bmatrix} 0 & j_{p \cdot q}^{\mathsf{T}} & 0_q^{\mathsf{T}} & 0_{p \cdot q}^{\mathsf{T}} \ D \otimes (C + I_q) & D \otimes C \ 0_{p \cdot q} & + & 0_{p \cdot q imes q} & + \ (\overline{D} - I_p) \otimes \overline{C} & \overline{D} \otimes (\overline{C} - I_q) \ \hline 0_q & j_p^{\mathsf{T}} \otimes (\overline{C} - I_q) & 0_{q imes q} & j_p^{\mathsf{T}} \otimes \overline{C} \ \hline 0_{p \cdot q} & + & (\overline{D} - I_p) \otimes (C + I_q) & + \ (\overline{D} - I_p) \otimes (\overline{C} - I_q) & D \otimes \overline{C} \ \hline \end{pmatrix}$$

Siamese twin design

Theorem 3

Let p and q=2p-1 be prime powers, $p\equiv 3 \pmod 4$, and let the matrices M_1 , M_2 and I be defined as above. The matrix $S=I+M_1-M_2$ is a Siamese twin design with parameters $(4p^2,2p^2-p,p^2-p)$ sharing the entries of I.

The matrix I can be written as

$$I = \begin{bmatrix} 0 & |j_{p \cdot q}^T| & 0_q^T & |0_{p \cdot q}^T| \\ \hline 0_{4p^2-1} & |X| & |0_{(4p^2-1)\times q}| & Y \end{bmatrix}.$$

The matrix X is the incidence matrix of a $2-(2p^2-p,p^2-p,p^2-p-1)$ design, and Y is the incidence matrix of a pairwise balanced design $PBD(2p^2-p,\{p^2,p^2-p\},p^2-p-1)$. X is the incidence matrix of the derived design of the Menon designs with incidence matrices M_1 and M_2 , with respect to the first block. When p and 2p-1 are primes, the derived design and the pairwise balanced design are cyclic.

Two square matrices M and N of order n are said to be amicable if $MN^T = NM^T$.

The matrices M_1 and M_2 give rise to amicable regular Hadamard matrices.

Codes constructed from block designs have been extensively studied.

- E. F. Assmus Jnr, J. D. Key, Designs and their codes, Cambridge University Press, Cambridge, 1992.
- A. Baartmans, I. Landjev, V. D. Tonchev, On the binary codes of Steiner triple systems, Des. Codes Cryptogr. 8 (1996), 29–43.
- I. Bouyukliev, V. Fack, J. Winne, 2-(31, 15, 7), 2-(35, 17, 8) and 2-(36, 15, 6) designs with automorphisms of odd prime order, and their related Hadamard matrices and codes, Des. Codes Cryptogr., **51** (2009), no. 2, 105–122.
- V. D. Tonchev, Quantum Codes from Finite Geometry and Combinatorial Designs, Finite Groups, Vertex Operator Algebras, and Combinatorics, Research Institute for Mathematical Sciences, 1656, (2009) 44-54.

Theorem 4 [M. Harada, V. D. Tonchev, 2003]

Let \mathcal{D} be a 2- (v, k, λ) design with a **fixed-point-free** and **fixed-block-free automorphism** ϕ of order q, where q is prime. Further, let M be the orbit matrix induced by the action of the group $G = \langle \phi \rangle$ on the design \mathcal{D} . If p is a prime dividing r and λ then the **orbit matrix** M generates a **self-orthogonal code** of length b|q over \mathbf{F}_p .

Using Theorem 4 Harada and Tonchev constructed a ternary [63,20,21] code with a record breaking minimum weight from the symmetric 2-(189,48,12) design found by Janko.

If G is a cyclic group of a prime order p that does not fix any point or block and $p|(r-\lambda)$, then the rows of the orbit matrix M generate a self-orthogonal code over \mathbf{F}_{p} .

Theorem 6

Let \mathcal{D} be a symmetric (v, k, λ) design with an automorphism group G which acts on \mathcal{D} with f fixed points (and f fixed blocks) and $\frac{v-f}{w}$ orbits of length w. If p is a prime that divides w and $r-\lambda$, then the rows and columns of the non-fixed part of the orbit matrix M for automorphism group G generate a self-orthogonal code of length $\frac{v-f}{w}$ over \mathbb{F}_p .

The following matrix is an obit matrix of the Menon design with the incidence matrix M described in Theorem 1:

$$O_{M} = \begin{bmatrix} 0 & 0_{q}^{T} & p j_{q}^{T} & 0_{q}^{T} \\ \hline 0_{q} & 0_{q \times q} & p (\overline{C} - I_{q}) & p \overline{C} \\ \hline j_{q} & C & \frac{p-1}{2} J_{q} + \frac{p-1}{2} I_{q} & \frac{p-1}{2} C + \frac{p+1}{2} (\overline{C} - I_{q}) \\ \hline 0_{q} & C + I_{q} & \frac{p+1}{2} C + \frac{p-1}{2} (\overline{C} - I_{q}) & \frac{p-1}{2} J_{q} + \frac{p-1}{2} I_{q} \end{bmatrix}$$

The matrix O_M is an orbit matrix of a symmetric design for parameters $(4p^2, 2p^2 - p, p^2 - p)$ and the orbit length distribution with q+1 fixed points and 2q orbits of length p for points and blocks, whenever q is a prime power, $q \equiv 1 \pmod{4}$, and $p = \frac{q+1}{2}$.

Let q be a prime power, $q \equiv 1 \pmod{4}$, and p be a prime dividing $\frac{q+1}{2}$. It follows from Theorem 6 that the rows of the matrix

$$R = \left[\begin{array}{c|c} \frac{q-1}{4} J_q + \frac{q-1}{4} I_q & \frac{q-1}{4} C + \frac{q+3}{4} (\overline{C} - I_q) \\ \hline \frac{q+3}{4} C + \frac{q-1}{4} (\overline{C} - I_q) & \frac{q-1}{4} J_q + \frac{q-1}{4} I_q \end{array} \right]$$

span a self-orthogonal code over \mathbf{F}_p of length 2q.

The dimension of this code is q-1.

q	р	parameters of the code	parameters of the dual code
5	3	[10, 4, 6] ₃ *	[10, 6, 4] ₃ *
9	5	[18, 8, 8] ₅ *	[18, 10, 6] ₅ *
13	7	$[26, 12, 10]_7$	$[26, 14, 8]_7$
17	3	[34, 16, 12] ₃ *	[34, 18, 10] ₃ *
29	3	[58, 28, 18] ₃ *	[58, 30, 16] ₃ *
	5	$[58, 28, 18]_5$	[58, 30, 16] ₅
41	3	[82, 40, 21] ₃ *	[82, 42, 19] ₃ *

Table: Parameters of the self-orthogonal codes

^{*} Largest minimum distance among all known codes of the given length and dimension.

$$S = \begin{bmatrix} 0_q & 0_q & \frac{q-1}{4}J_q + \frac{q-1}{4}I_q & \frac{q-1}{4}C + \frac{q+3}{4}(\overline{C} - I_q) \\ 0_q & 0_q & \frac{q+3}{4}C + \frac{q-1}{4}(\overline{C} - I_q) & \frac{q-1}{4}J_q + \frac{q-1}{4}I_q \\ \hline 1 & 0 & j_q^T & 0_q^T \\ \hline 0 & 1 & 0_q^T & j_q^T \end{bmatrix}$$

span a self-dual [2q+2, q+1] code over \mathbf{F}_p .

If q is a prime and q = 12m + 5, where m is a non-negative integer, then the code spanned by S is equivalent to the Pless symmetry code C(q).

q	р	parameters of the code	q	р	parameters of the code
5	3	[12, 6, 6] ₃ *	29	3	[60, 30, 18] ₃ *
9	5	[20, 10, 8] ₅ *		5	[60, 30, 18] ₅
13	7	$[28, 14, 10]_7$	41	3	[84, 42, 21] ₃ *
17	3	[36, 18, 12] ₃ *			-

Table: Parameters of the self-dual codes

^{*} Largest minimum distance among all known codes of the given length and dimension.