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An [n, k, d] code is a code with length n, rank k and minimum
distance d.
In [Hurley and Hurley 2009] a new technique for constructing
codes from group rings and circulant matrices is given.
This was applied in [Hurley and McLoughlin 2008] to construct
the extended binary Golay code (the unique [24, 12, 8] linear
block code).
Subsequently, in [McLoughlin 2012] a similar technique was
used to construct the self-dual, doubly-even and extremal [48,
24, 12] binary linear block code.
Here these results are generalised (using the semi-simplicity of
the underlying group algebra) to use unitary units to construct
linear block codes of length n = 3(2n) for any positive whole
number n.
Some of these results are based on joint work with Fergal
Gallagher and Ian McLoughlin.
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Definition
A generator matrix of an (n, k) code C is a k × n matrix whose
rowspace is the set of all codewords. If the entries of the matrix
are over F2, then the code C is a subspace of dimension ≤ k in
the larger vector space Fn

2. Such a code is called a linear block
code. The rank of the generator matrix must be equal to k .
Thus we can put the generator matrix in standard form [IP] with
I being the k × k identity matrix on the left and P being a
k × (n − k) parity matrix on the right.
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Group Rings

Definition
Given a group G and a commutative ring R, define the group
ring as the set of all formal finite linear combinations of
elements of G, with coefficients in R. So
RG = {

∑
agg|ag ∈ R,g ∈ G}. Define addition in the obvious

way:
∑

agg +
∑

bgg =
∑

(ag + bg)g.
Define multiplication as
(
∑

g∈G agg)(
∑

h∈G bhh) =
∑

g,h∈G(agbh)(gh)
Usually R is a field, so RG is an algebra.

Definition
Given a group G and a commutative ring R, define the group
ring as the set of all functions from G to R (with finite support).
Define addition pointwise (f + g) : x 7→ f (x) + f (y)
and define multiplication using convolution of functions:
(fg) : x 7→

∑
uv=x f (u)g(v) =

∑
u∈G f (u)g(u−1x)
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Let RG be a group ring with |G| = n. Then for each element
of the group ring there is a unique n × n matrix with
coefficients from R according to a particular listing of the
group elements. A listing of the group elements is a
permutation of the n group elements. For example,
consider the group ring F2C4 with group listing 1, x , x2, x3.
We can form a group matrix as follows.

1 x x2 x3

1 1 x x2 x3

x3 x3 1 x x2

x2 x2 x3 1 x
x x x2 x3 1
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The column headings are the group elements according to the
group listing, and the row headings are the inverses of the
group elements in the listing. The entries of the matrix consist
of the product of the row and column headings. Thus we get
the 4 × 4 group matrix

1 x x2 x3

x3 1 x x2

x2 x3 1 x
x x2 x3 1


With this group matrix, we can form a group ring matrix for each
group ring element. For example consider the group ring
element x2 + x3 in F2C4. Then the group ring matrix according
to the group listing 1, x , x2, x3 is the coefficients of the group
elements x2 and x3 in the positions where these group
elements appear in the group matrix.
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So the group ring matrix of x2 + x3 is
0 0 1 1
1 0 0 1
1 1 0 0
0 1 1 0


There is a ring isomorphism between the group ring and the
ring of group ring matrices according to a group listing [Hurley
and Hurley 2009].

Lemma (Hurley and Hurley 2009)

In a group algebra FG, a non-zero element u is a zero divisor if
the corresponding group ring matrix does not have full rank,
and is a unit otherwise.
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Consider for example the group ring F2D8 with group listing
1, x , x2, x3, y , xy , x2y , x3y . We can form a group matrix as
follows

1 x x2 x3 y xy x2y x3y
1 1 x x2 x3 y xy x2y x3y
x3 x3 1 x x2 xy x2y x3y y
x2 x2 x3 1 x x2y x3y y xy
x x x2 x3 1 x3y y xy x2y
y y xy x2y x3y 1 x x2 x3

xy xy x2y x3y y x3 1 x x2

x2y x2y x3y y xy x2 x3 1 x
x3y x3y y xy x2y x x2 x3 1

Notice that the structure of the group matrix is
[

B A
A B

]
where

B is a 4× 4 circulant matrix and A is a 4× 4 reverse circulant
matrix. The group ring matrix will also have the same structure.
Because A is reverse circulant, A = AT .
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Self-Dual Unitary Unit Codes

Let U(RG) denote the units of RG.
Let V (RG) denote the normalised units of RG.
Let α =

∑
aigi ∈ RG where ai ∈ R and gi ∈ G. Then consider

the map
∗ :
∑

aigi →
∑

aig−1
i

This map is an involution.
That is to say, ∗ is an antiautomorphism of order 2.
That is to say, (αβ)∗ = β∗α∗ and (α∗)∗ = α for all α, β ∈ RG.
An element α ∈ RG is called unitary if αα∗ = 1 = α∗α (i.e.
α∗ = α−1).
∗ is known as the classical involution of the group ring (there
are also non-classical involutions)
Let H be a subset of an arbitrary group ring RG.
Then H∗ denotes the unitary units of H.
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Self-Dual Unitary Unit Codes

Let u ∈ F2D2n and let u = 1 + yd where d is a sum of some of
the powers of x
(i.e. d ∈ F2Cn with Cn = 〈x〉 and
D2n = 〈x , y |xn = y2 = 1, xy = x−1〉).
Then the group ring matrix of u according to the listing

1, x , .., xn, y , xy , .., xny is of the form
[

I A
A I

]
.

Now u2 = 0⇔ (1 + yd)2 = 0⇔ 12 + 2(yd) + ydyd = 0⇔
1 + d∗d = 0⇔ d∗d = 1.
Thus if d∗d = 1 (i.e. d is a unitary unit of F2Cn), then u
generates a code which is self dual and the code C generated
by the group ring element u is self-dual.
Note that if C is a binary self-orthogonal code then each
codeword has even weight. Such a code is called an even code
or a Type I code. If every codeword has weight divisible by 4,
then we have a doubly even code or a Type II code.
If d has weight equal to −1(mod4), then it is a Type II code
(otherwise it is a Type I code).Leo Creedon Towards a group ring construction of codes using dihedral groups
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The [24,12,8] Golay code

In [Hurley and McLoughlin 2008] these techniques were used
to construct the extended binary Golay [24,12,8] code.
This was given as u = 1 + yd ∈ F2D24, where
d = 110111101000 = 1 + b + b3 + b4 + b5 + b6 + b8 ∈ F2C12
This was found using a computationally "expensive" computer
search.
This search can be greatly refined using the following algebraic
considerations.
Now F2C12 ' F2(C3 × C4) ' (F2C3)C4 ' (F2 ⊕ F4)C4
' F2C4 ⊕ F4C4
' (F2〈b4〉)〈b3〉 '
(F2〈b4〉b̂4 ⊕ F2〈b4〉(1 + b̂4))〈b3〉 ' (F2b̂4 ⊕ F2〈b4〉(1 + b̂4))〈b3〉.
Note that F2b̂4 = {0, b̂4} ' F2 and
F2〈b4〉(1 + b̂4) = {0,b4 + b8,1 + b4,1 + b8} ' F4.
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The [24,12,8] Golay code

Note also that e1 = b̂4 and e2 = b4 + b8 = 1 + b̂4 are
symmetric idempotents
(i.e. e2

i = ei and e∗i = ei for i = 1,2)
Let c = b3 (an element of order 4). Now in this format,

d = (1+b4+b8)+(b1+b5)+b3+b6 = b̂4+b9(b4+b8)+c1+c2

= c0b̂4 + c3(b4 + b8) + (c1 + c2)(1 + b̂4 + b̂4)

= c0b̂4 + c3(b4 + b8) + (c1 + c2)(b̂4) + (c1 + c2)(b4 + b8)

= (c0 + c1 + c2)b̂4 ⊕ (c1 + c2 + c3)(b4 + b8)

= (c3 + ĉ)b̂4 ⊕ (1 + ĉ)(1 + b̂4)
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The [24,12,8] Golay code

So d = (c3 + ĉ)b̂4 ⊕ (1 + ĉ)(1 + b̂4).
Note that (c3 + ĉ) and (1 + ĉ) are unitary units and b̂4 and
(1 + b̂4) are symmetric orthogonal idempotents.Now

d2 = c2b̂4 ⊕ c0(b4 + b8)

⇒ d4 = c0b̂4 ⊕ c0(b4 + b8) = 1.

Also

dd∗ = (c3 + ĉ)b̂4(c1 + ĉ)b̂4 ⊕ (1 + ĉ)2(b4 + b8)2

= c0b̂4 ⊕ c0(b4 + b8) = 1

Hence d is a unitary unit of order 4.
Note the ease with which the above calculations were
performed due to the direct decomposition of the group ring.
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Generalisations

Lemma
Let K be any commutative ring and G any group. Suppose KG
decomposes as KGe1 ⊕ KGe2 where e1 is a symmetric central
idempotent and e2 = 1− e1. α = βe1 + γe2 is a unitary unit if
and only if ββ∗e1 = e1 and γγ∗e2 = e2.
In particular, if β and γ are unitary units (i.e. in V∗(KG)) then
α = βe1 + γe2 is a unitary unit.
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Generalisations

Proof.
Suppose α is a unitary unit. Then
1 = αα∗ = (βe1+γe2)(βe1+γe2)

∗ = (βe1+γe2)(e∗1β
∗+e∗2γ

∗) =
(βe1 + γe2)(e1β

∗ + e2γ
∗) = βe2

1β
∗ + γe2

2γ
∗ = ββ∗e1 + γγ∗e2.

Hence ββ∗e1 + γγ∗e2 = 1 = e1 + e2 and so ββ∗e1 = e1 and
γγ∗e2 = e2 since it is a direct decomposition of rings.
Conversely, suppose ββ∗e1 = e1 and γγ∗e2 = e2. Then
αα∗ = (βe1+γe2)(βe1+γe2)

∗ = (βe1+γe2)((βe1)
∗+(γe2)

∗) =
(βe1+γe2)(e∗1β

∗+e∗2γ
∗) = (βe1+γe2)(e1β

∗+e2γ
∗) = βe1e1β

∗+
γe2e2γ

∗ = βe1β
∗ + γe2γ

∗ = ββ∗e1 + γγ∗e2 = e1 + e2 = 1 as
required.
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Generalisations

Definition
Let F be a finite field of characteristic p.
Define � : FG→ FG by �(

∑
aigi) =

∑
ap

i g−1
i

(the classical involution on FG followed by the Frobenius
automorphism on F )

Lemma
� defines a (non-classical) involution on F4C2n

given by �(
∑

aigi) =
∑

a2
i g−1

i
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Generalisations

Let π1 denote the projection of F2C3(2n) ' F2C2n ⊕ F4C2n onto
the left summand and let π2 denote the projection onto the right
summand.

Theorem
π1 commutes with ∗
(i.e. π1(α

∗) = (π1(α))
∗ for all α ∈ F2C3(2n).

However, π2 does not commute with ∗.
In fact π2(α

∗) = (π2(α))
� for all α ∈ F2C3(2n).

So ∗ restricts to the non-classical involution � on F4C2n . Hence
(αe2)(αe2)

∗ = e2 implies that αe2 corresponds to a unitary unit
in F2C2n under the non-classical involution �, i.e.
αe2 ∈ U�(F4C2n) = {u ∈ U(F4C2n)|uu� = 1}.
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Generalisations

To find all the classical unitary units and test to find their
minimum distance, it previously required a search of F2C3(2n)

(containing 23(2n) elements).
Now it requires a search of the classical unitary units of F2C2n

(containing 22n
elements) and a search of the non-classical

�-unitary units of F4C2n (containing 42n
= 22n+1

elements).
For example, for the Golay [24,12,8] code, McLoughlin and
Hurley searched F2C12 containing 212 elements, whereas this
new technique requires us to only search 222

+ 223
= 24 + 28

elements.
Similarly, for the extremal [48,24,12] code, McLoughlin
searched F2C24 containing 224 elements, but this new
technique requires us to only search 223

+ 224
= 28 + 216

elements.
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What next?

The next step (for codes of length 96) will be to search
F2C48. Searching all 248 elements was computationally
prohibitive, but with this new technique we need "only" test
224

+ 225
= 216 + 232 elements.

Note that we have been looking at codes of length 3(2n). If
we apply this technique to codes of length m(2n), where m
is an odd number > 3 then the gains will be even greater.
In particular, it may be very useful in hunting for an
extremal [72,36,16] code (or determining that none exist).
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Thank You

Thank You!

Leo Creedon Towards a group ring construction of codes using dihedral groups


