SPC product codes under the BEC

Cardell, J. J. Climent A. López Martín

# Performance of SPC product codes under the erasure channel

Sara D. Cardell<sup>1</sup> Joan-Josep Climent<sup>1</sup> Alberto López Martín<sup>2</sup>

<sup>1</sup> Universitat d'Alacant, Spain
<sup>2</sup> Instituto Nacional de Matemática Pura e Aplicada, Brazil

ALCOMA 2015



#### Outline

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska Numbers

Countin

- Preliminaries
  - SPC product code
  - Kotska Numbers
- Counting patterns
- 3 Conclusions

#### Outline

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

#### Preliminaries

SPC producode

Kotska

Numbers
Counting

- Preliminaries
  - SPC product code
  - Kotska Numbers
- Counting patterns
- 3 Conclusions

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska

Kotska Numbers

patterns

Conclusio

Elias, P.: Coding for noisy channels.

In: IRE International Convention Record, part 4, pp. 37-46 (1955)

- ▶ Each sent symbol is either correctly received or considered as erased
- ► Each codeword symbol is lost with a fixed independent probability.
- $\blacktriangleright$  An [n, k, d]-code can recover up to d-1 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska

Numbers Counting

Canalusia

Elias, P.: Coding for noisy channels.

In: IRE International Convention Record, part 4, pp. 37-46 (1955)

- ▶ Each sent symbol is either correctly received or considered as erased.
- Each codeword symbol is lost with a fixed independent probability
- $\blacktriangleright$  An [n, k, d]-code can recover up to d-1 erasures

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting patterns

Conclusio

Elias, P.: Coding for noisy channels.

In: IRE International Convention Record, part 4, pp. 37-46 (1955)

- ▶ Each sent symbol is either correctly received or considered as erased.
- Each codeword symbol is lost with a fixed independent probability.
- $\blacktriangleright$  An [n, k, d]-code can recover up to d-1 erasures

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Countin patterns

Conclusion

Elias, P.: Coding for noisy channels.

In: IRE International Convention Record, part 4, pp. 37-46 (1955)

- Each sent symbol is either correctly received or considered as erased.
- Each codeword symbol is lost with a fixed independent probability.
- ▶ An [n, k, d]-code can recover up to d 1 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska

Countin patterns

Conclusion

Let  $\mathbb{F}_q$  be the Galois field with q elements.

#### Definition

A linear product code  $\mathcal C$  over  $\mathbb F_q$  is formed from two other linear codes  $\mathcal C^-$  and  $\mathcal C'$  with parameters  $[n^-,k^-,d^-]$  and [n',k',d'] over  $\mathbb F_q$ , respectively. The product code  $\mathcal C$  will have parameters  $[n^-n,k^-k^-,d^-d^+]$  over  $\mathbb F_q$ .

Over the erasure channel, the product code corrects up to  $d^-d^- - 1$  erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska

Numbers Countin

Conclusion

Let  $\mathbb{F}_q$  be the Galois field with q elements.

#### Definition

A linear product code  $\mathcal C$  over  $\mathbb F_q$  is formed from two other linear codes  $\mathcal C^-$  and  $\mathcal C^{\scriptscriptstyle |}$  with parameters  $[n^-,k^-,d^-]$  and  $[n^{\scriptscriptstyle |},k^{\scriptscriptstyle |},d^{\scriptscriptstyle |}]$  over  $\mathbb F_q$ , respectively. The product code  $\mathcal C$  will have parameters  $[n^-n^{\scriptscriptstyle |},k^-k^{\scriptscriptstyle |},d^-d^{\scriptscriptstyle |}]$  over  $\mathbb F_q$ .

Over the erasure channel, the product code corrects up to  $d^-d^- - 1$  erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska

Counting

Conclusion

Let  $\mathbb{F}_q$  be the Galois field with q elements.

#### Definition

A **linear product code**  $\mathcal C$  over  $\mathbb F_q$  is formed from two other linear codes  $\mathcal C^-$  and  $\mathcal C^{\scriptscriptstyle |}$  with parameters  $[n^-,k^-,d^-]$  and  $[n^{\scriptscriptstyle |},k^{\scriptscriptstyle |},d^{\scriptscriptstyle |}]$  over  $\mathbb F_q$ , respectively. The product code  $\mathcal C$  will have parameters  $[n^-n^{\scriptscriptstyle |},k^-k^{\scriptscriptstyle |},d^-d^{\scriptscriptstyle |}]$  over  $\mathbb F_q$ .

Over the erasure channel, the product code corrects up to  $d^-d^- - 1$  erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska

Counting

Conclusion

The codewords of length  $n^-n'$  can be seen as arrays with size  $n^- \times n'$  in a way that the columns are codewords of  $\mathcal{C}^+$  and the rows are codewords of  $\mathcal{C}^-$ .



Figure: Codeword of a product code, with systematic encoding

#### SPC code

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code

Kotska Numbers

Counting

Conclusio

#### Definition

A single parity-check code is a linear binary code with parameters [n, n-1, 2].

- The single parity-check (SPC) code is a very popular error detection code, since it is very easy to implement.
- ▶ This codes can correct one single erasure over the erasure channel

#### SPC code

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code

code Kotska Numbers

Countin patterns

Conclusion

#### Definition

A single parity-check code is a linear binary code with parameters [n, n-1, 2].

- ➤ The single parity-check (SPC) code is a very popular error detection code, since it is very easy to implement.
- ▶ This codes can correct one single erasure over the erasure channel

#### SPC code

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code

Kotska Numbers

patterns

Conclusion

#### Definition

A single parity-check code is a linear binary code with parameters [n, n-1, 2].

- ➤ The single parity-check (SPC) code is a very popular error detection code, since it is very easy to implement.
- ▶ This codes can correct one single erasure over the erasure channel.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Prelimin ries

SPC product

code

Kotska Numbers

Counting

Conclusion

 $\mathcal{C}^- = \mathcal{C}^+$  is a linear binary code with parameters [n, n-1, 2].

- ▶ We consider the product code  $C = C^- \otimes C'$ .
- ▶ The parameters of the product code are  $[n^2, (n-1)^2, 4]$ .
- ▶ The code C corrects only 3 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Prelimin ries

SPC product code

Kotska Numbers

Counting

Conclusion

 $\mathcal{C}^- = \mathcal{C}^+$  is a linear binary code with parameters [n, n-1, 2].

- ▶ We consider the product code  $C = C^- \otimes C^{-1}$ .
- ▶ The parameters of the product code are  $[n^2, (n-1)^2, 4]$ .
- ▶ The code C corrects only 3 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product

code Kotska

Countin

Conclusio

 $\mathcal{C}^- = \mathcal{C}^+$  is a linear binary code with parameters [n, n-1, 2].

- ▶ We consider the product code  $C = C^- \otimes C^{\scriptscriptstyle |}$ .
- ▶ The parameters of the product code are  $[n^2, (n-1)^2, 4]$
- ▶ The code C corrects only 3 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product

code Kotska

Countin

Conclusi

 $\mathcal{C}^- = \mathcal{C}^+$  is a linear binary code with parameters [n, n-1, 2].

- ▶ We consider the product code  $C = C^- \otimes C^{-}$ .
- ▶ The parameters of the product code are  $[n^2, (n-1)^2, 4]$ .
- ▶ The code C corrects only 3 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product

code Kotska

Countin

Conclusi

 $\mathcal{C}^- = \mathcal{C}^+$  is a linear binary code with parameters [n, n-1, 2].

- ▶ We consider the product code  $C = C^- \otimes C'$ .
- ▶ The parameters of the product code are  $[n^2, (n-1)^2, 4]$ .
- ightharpoonup The code  $\mathcal C$  corrects only 3 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product

code Kotska

Countin

Conclusio

 $\mathcal{C}^- = \mathcal{C}^+$  is a linear binary code with parameters [n, n-1, 2].

- ▶ We consider the product code  $C = C^- \otimes C^{\scriptscriptstyle \perp}$ .
- ▶ The parameters of the product code are  $[n^2, (n-1)^2, 4]$ .
- ▶ The code C corrects only 3 erasures.

### Erasure pattern

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code

Kotska Numbers

Numbers Countin

.

#### Definition

An **erasure pattern** of size  $m \times m$ , with t erasures, where  $0 \le t \le m^2$  and  $1 \le m \le n$ , is an array of size  $m \times m$  where t of the entries correspond to the position of the erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting patterns

- An erasure pattern of size n × n corresponds to words of size n × n, where the position of the erasures is the unique information we consider.
- Given a received word with t erasures, the decoder will perform iterative row-wise and column-wise decoding to recover the erased bits.
- When a single bit is erased in a row or column, it can be recovered
- ▶ If more than one bit is erased in a row (column), it is skipped.
- Decoding is performed until no further recovery is possible

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska

Counting

- An erasure pattern of size n × n corresponds to words of size n × n, where the position of the erasures is the unique information we consider.
- ➤ Given a received word with *t* erasures, the decoder will perform iterative row-wise and column-wise decoding to recover the erased bits.
- When a single bit is erased in a row or column, it can be recovered
- ▶ If more than one bit is erased in a row (column), it is skipped.
- Decoding is performed until no further recovery is possible

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting patterns

- An erasure pattern of size n × n corresponds to words of size n × n, where the position of the erasures is the unique information we consider.
- ➤ Given a received word with *t* erasures, the decoder will perform iterative row-wise and column-wise decoding to recover the erased bits.
- ▶ When a single bit is erased in a row or column, it can be recovered.
- If more than one bit is erased in a row (column), it is skipped.
- Decoding is performed until no further recovery is possible

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting patterns

- An erasure pattern of size n × n corresponds to words of size n × n, where the position of the erasures is the unique information we consider.
- ➤ Given a received word with *t* erasures, the decoder will perform iterative row-wise and column-wise decoding to recover the erased bits.
- ▶ When a single bit is erased in a row or column, it can be recovered.
- If more than one bit is erased in a row (column), it is skipped.
- Decoding is performed until no further recovery is possible

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting patterns

- An erasure pattern of size n × n corresponds to words of size n × n, where the position of the erasures is the unique information we consider.
- ➤ Given a received word with *t* erasures, the decoder will perform iterative row-wise and column-wise decoding to recover the erased bits.
- ▶ When a single bit is erased in a row or column, it can be recovered.
- If more than one bit is erased in a row (column), it is skipped.
- ▶ Decoding is performed until no further recovery is possible.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code

Kotska Numbers

Counting

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{C}$  with parameters [6, 5, 2].

We can construct the binary product code  $C = \widehat{C} \otimes \widehat{C}$  with parameters [36, 25, 4].

- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska

Counting

Conclusion

#### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].

We can construct the binary product code  $C = \widehat{C} \otimes \widehat{C}$  with parameters [36, 25, 4].

The code is supposed to correct 3 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Countin patterns

Conclusion

#### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].

We can construct the binary product code  $C = \widehat{C} \otimes \widehat{C}$  with parameters [36, 25, 4].

|   | × |   |   |  |
|---|---|---|---|--|
|   |   | × | X |  |
|   |   | × |   |  |
|   | × |   | × |  |
| × |   |   |   |  |
| × |   |   |   |  |

- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Countin patterns

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

ries
SPC product
code
Kotska
Numbers

Countin

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Countin patterns

Conclusio

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ▶ The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Countin patterns

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].

We can construct the binary product code  $C = \widehat{C} \otimes \widehat{C}$  with parameters [36, 25, 4].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Countin patterns

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].

We can construct the binary product code  $C = \widehat{C} \otimes \widehat{C}$  with parameters [36, 25, 4].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting patterns

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Countin patterns

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting patterns

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Countin patterns

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].

We can construct the binary product code  $C = \widehat{C} \otimes \widehat{C}$  with parameters [36, 25, 4].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ▶ The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].

We can construct the binary product code  $C = \widehat{C} \otimes \widehat{C}$  with parameters [36, 25, 4].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Countin patterns

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].

We can construct the binary product code  $C = \widehat{C} \otimes \widehat{C}$  with parameters [36, 25, 4].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Countin patterns

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ► The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Countin patterns

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ▶ The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ▶ The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting patterns

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].



- ▶ The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures

SPC product codes under the BEC

S. D. Cardell, J. J. Climent A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting

Conclusion

### Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].

We can construct the binary product code  $C = \widehat{C} \otimes \widehat{C}$  with parameters [36, 25, 4].



- ▶ The code is supposed to correct 3 erasures.
- ▶ We have corrected 8 erasures.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting

Conclusion

#### Definition

An erasure pattern of size  $m \times m$  is said to be **uncorrectable** if and only if it contains a subpattern of size  $l \times l$ ,  $l \le m$ , such that each row and each column have two or more erasures.

### Example



(a) Correctable erasure pattern of size 4 × 4 with 7 erasures



(b) Uncorrectable erasure pattern of size  $4 \times 4$  with 7 erasures

## Erasure pattern

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code

code Kotska Numbers

Counting

Conclusion

## Example



Figure: Uncorrectable erasure pattern of size  $4 \times 4$  with 7 erasures

## Erasure pattern

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code

code Kotska Numbers

Counting

Conclusion

## Example



Figure: Uncorrectable erasure pattern of size  $4 \times 4$  with 7 erasures

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska

Numbers Counting

Conclusion

- ► Erasure patterns of size *n* × *n* with 3 erasures or less are always correctable.
- ► Erasure patterns of size  $n \times n$  with t erasures,  $4 \le t \le 2n 1$  may or may not be correctable.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

ries
SPC product
code
Kotska

Kotska Numbers Counting

patterns

- Erasure patterns of size n × n with 3 erasures or less are always correctable.
- ▶ Erasure patterns of size  $n \times n$  with t erasures,  $4 \le t \le 2n 1$  may or may not be correctable.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska Numbers

Counting patterns

Conclusion

## Example (cont.)

Consider the SPC code  $\widehat{\mathcal{C}}$  with parameters [6, 5, 2].

We can construct the binary product code  $C = \widehat{C} \otimes \widehat{C}$  with parameters [36, 25, 4].



| × | × | × | × | × |  |
|---|---|---|---|---|--|
| × | × |   |   |   |  |
| × |   |   |   |   |  |
| × |   |   |   |   |  |
| × |   |   |   |   |  |
| × |   |   |   |   |  |

#### Classification

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code

Kotska Numbers

Countin

Conclusion

#### Definition

An uncorrectable erasure pattern is said to be **strict** if none of the erasures can be corrected. Equally, an uncorrectable erasure pattern is said to be **partial** if it can be partially corrected.





## Strict uncorrectable erasure patterns

SPC product codes under the BEC

Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product

code Kotska

Counting

Conclusion

#### Lemma

An strict uncorrectable erasure pattern contains two or more erasures in each row and column in error.

| × | × | × |
|---|---|---|
| × | × |   |
|   |   |   |
|   | × | × |

## Partial uncorrectable erasure pattern

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product

code Kotska Numbers

Counting

Conclusion

#### Lemma

A partial uncorrectable erasure pattern always contains an strict uncorrectable erasure pattern.

| × | × | × |
|---|---|---|
| × | × |   |
| × |   |   |
| × |   |   |

### Idea

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code

Kotska Numbers

Counting patterns

Conclusion

#### Purpose

We would like to count the number of uncorrectable erasure patterns of size  $n \times n$  with t erasures,  $4 \le t \le 2n - 1$ .

In this work, we count the number of strict uncorrectable erasure patterns

### Idea

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code

Kotska Numbers

Counting patterns

Conclus

### Purpose

We would like to count the number of uncorrectable erasure patterns of size  $n \times n$  with t erasures,  $4 \le t \le 2n - 1$ .

In this work, we count the number of strict uncorrectable erasure patterns.

# Partition of an integer

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska

Numbers

patterns

Conclusi

#### Definition

If t is a positive integer, then a **partition** of t is a non-increasing sequence of positive integers  $(\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_p)$  such that  $\sum_{i=1}^{p} \lambda_i = t$ .

We denote by  $P_t$  the set of possible partitions of the integer t.

#### Example

For example, the set of partitions of 6 is given by

$$\mathcal{P}_6 = \{(6), (5, 1), (4, 2), (4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1)\}$$

# Partition of an integer

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska Numbers

Countin patterns

Conclusio

#### Definition

If t is a positive integer, then a **partition** of t is a non-increasing sequence of positive integers  $(\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_p)$  such that  $\sum_{i=1}^p \lambda_i = t$ .

We denote by  $\mathcal{P}_t$  the set of possible partitions of the integer t.

#### Example

For example, the set of partitions of 6 is given by

$$\mathcal{P}_6 = \{(6), (5, 1), (4, 2), (4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1)\}$$

# Partition of an integer

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska Numbers

Countin patterns

Conclusi

#### Definition

If t is a positive integer, then a **partition** of t is a non-increasing sequence of positive integers  $(\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_p)$  such that  $\sum_{i=1}^p \lambda_i = t$ .

We denote by  $\mathcal{P}_t$  the set of possible partitions of the integer t.

#### Example

For example, the set of partitions of 6 is given by

$$\mathcal{P}_6 = \{(6), (5, 1), (4, 2), (4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1)\}.$$

# Conjugate partition

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc

code

Kotska Numbers

Countin

Conclusio

#### Definition

Let us consider a partition  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$  of t. The **conjugate** of  $\lambda$  is defined as the vector  $\lambda^* = (\lambda_1^*, \lambda_2^*, \dots, \lambda_{p'}^*)$  where

$$\lambda_j^* = |\{i \mid 1 \le i \le p, \lambda_i \ge j\}|.$$

Notice that both,  $\lambda$  and  $\lambda^*$ , are partitions of the same integer t

# Conjugate partition

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc

code Kotska

Numbers

patterns

Conclusion

#### Definition

Let us consider a partition  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$  of t. The **conjugate** of  $\lambda$  is defined as the vector  $\lambda^* = (\lambda_1^*, \lambda_2^*, \dots, \lambda_{p'}^*)$  where

$$\lambda_j^* = |\{i \mid 1 \le i \le p, \lambda_i \ge j\}|.$$

Notice that both,  $\lambda$  and  $\lambda^*$ , are partitions of the same integer t.

# Conjugate partition

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc

code

Kotska Numbers

Countin

Conclusion

### Example

 $\lambda$  = (3, 1) and  $\lambda^*$  = (2, 1, 1) are conjugate partitions of t = 4.





SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Prelimina ries SPC produ

Kotska Numbers

Countin

Conclusio

Let  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$  and  $\mu = (\mu_1, \mu_2, \dots, \mu_q)$  be two partitions of the same integer t.

#### Definition

A **Young diagram** of shape  $\lambda$  is an arrangement of t boxes in p rows where there are  $\lambda_i$  boxes in row i, with  $i = 1, 2, \ldots, p$ , and these boxes are left justified.

$$\lambda = (4, 3, 2, 2)$$



SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska

Numbers
Counting

Conclusion

Let  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$  and  $\mu = (\mu_1, \mu_2, \dots, \mu_q)$  be two partitions of the same integer t.

#### Definition

A **Young tableau** of shape  $\lambda$  and content  $\mu$  is obtained from a Young diagram of shape  $\lambda$  by inserting in each box one of the integers 1, 2, . . . , q in such a way that the following conditions hold:

- i) the elements in each row are non-decreasing,
- ii) the elements in each column are strictly increasing,
- iii) the integer j occurs  $\mu_j$  times, with j = 1, 2, ..., q.

$$\lambda = (4, 3, 2, 2)$$



SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska Numbers

Counting patterns

Conclusion

Let  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$  and  $\mu = (\mu_1, \mu_2, \dots, \mu_q)$  be two partitions of the same integer t.

#### Definition

A **Young tableau** of shape  $\lambda$  and content  $\mu$  is obtained from a Young diagram of shape  $\lambda$  by inserting in each box one of the integers 1, 2, . . . , q in such a way that the following conditions hold:

- i) the elements in each row are non-decreasing,
- ii) the elements in each column are strictly increasing,
- iii) the integer j occurs  $\mu_j$  times, with j = 1, 2, ..., q.

$$\lambda = (4, 3, 2, 2)$$
  
 $\mu = (3, 3, 2, 2, 1)$ 

| 1 | 1 | 1 | 2 |
|---|---|---|---|
| 2 | 2 | 3 |   |
| 3 | 4 |   |   |
| 4 | 5 |   |   |

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Prelimina ries SPC produ

code Kotska

Numbers

puttomo

This is not the only option; there are 5 more Young tableaux with these properties.

| 1 | 1 | 1 | 2 |
|---|---|---|---|
| 2 | 2 | 3 |   |
| 3 | 4 |   |   |
| 4 | 5 |   |   |

| 1 | 1 | 1 | : |
|---|---|---|---|
| 2 | 2 | 4 |   |
| 3 | 3 |   |   |
| 4 | 5 |   |   |
|   |   |   |   |

| 1 | 1 | 1 | 2 |
|---|---|---|---|
| 2 | 2 | 5 |   |
| 3 | 3 |   |   |
| 4 | 4 |   |   |
|   |   |   |   |

| 1 | 1 | 1 | 3 |
|---|---|---|---|
| 2 | 2 | 2 |   |
| 3 | 4 |   |   |
| 4 | 5 |   |   |

| 1 | 1 | 1 | 4 |
|---|---|---|---|
| 2 | 2 | 2 |   |
| 3 | 3 |   |   |
| 4 | 5 |   |   |

| 1 | 1 | 1 | 5 |
|---|---|---|---|
| 2 | 2 | 2 |   |
| 3 | 3 |   |   |
| 4 | 4 |   |   |

#### Kotska numbers

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code

code Kotska Numbers

Counting

Conclusio

### Definition

If  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$  and  $\mu = (\mu_1, \mu_2, \dots, \mu_q)$  are two partitions of the same integer t, then the **Kostka number** denoted by  $\kappa_{\lambda,\mu}$ , is the number of Young tableaux of shape  $\lambda$  and content  $\mu$ .

#### Example

We want to compute  $\kappa_{(3,2,1),(3,2,1)}$ .

We have to count the number of Young tableaux of shape  $\lambda = (3, 2, 1)$  and content  $\mu = (3, 2, 1)$ .

| 1 | 1 | 1 |
|---|---|---|
| 2 | 2 |   |
|   |   |   |

Thus,  $\kappa_{(3,2,1),(3,2,1)} = 1$ .

### Kotska numbers

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska

Numbers

patterns

Conclusion

#### Definition

If  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$  and  $\mu = (\mu_1, \mu_2, \dots, \mu_q)$  are two partitions of the same integer t, then the **Kostka number** denoted by  $\kappa_{\lambda,\mu}$ , is the number of Young tableaux of shape  $\lambda$  and content  $\mu$ .

#### Example

We want to compute  $\kappa_{(3,2,1),(3,2,1)}$ .

We have to count the number of Young tableaux of shape  $\lambda = (3, 2, 1)$  and content  $\mu = (3, 2, 1)$ .

Thus,  $\kappa_{(3,2,1),(3,2,1)} = 1$ 

### Kotska numbers

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska

Numbers Counting

O. . . . land

Definition

# If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$ and $\mu = (\mu_1, \mu_2, \dots, \mu_q)$ are two partitions of the same integer t, then the **Kostka number** denoted by $\kappa_{\lambda,\mu}$ , is the number of Young tableaux of shape $\lambda$ and content $\mu$ .

### Example

We want to compute  $\kappa_{(3,2,1),(3,2,1)}$ .

We have to count the number of Young tableaux of shape  $\lambda = (3, 2, 1)$  and content  $\mu = (3, 2, 1)$ .

| 1 | 1 | 1 |
|---|---|---|
| 2 | 2 |   |
| 3 |   |   |

Thus,  $\kappa_{(3,2,1),(3,2,1)} = 1$ 

If  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$  and  $\mu = (\mu_1, \mu_2, \dots, \mu_q)$  are two partitions of the same integer t, then the **Kostka number** denoted by  $\kappa_{\lambda,\mu}$ , is the number of Young tableaux of shape  $\lambda$  and content  $\mu$ .

### Example

We want to compute  $\kappa_{(3,2,1),(3,2,1)}$ .

We have to count the number of Young tableaux of shape  $\lambda = (3, 2, 1)$  and content  $\mu = (3, 2, 1)$ .

| 1 | 1 | 1 |
|---|---|---|
| 2 | 2 |   |
| 3 |   |   |

Thus,  $\kappa_{(3,2,1),(3,2,1)} = 1$ .

# Counting binary matrices

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska Numbers

Counting patterns

Conclusio

- ▶ Let A be a binary matrix of size  $m_1 \times m_2$ .
- ▶ Let  $R = (r_1, r_2, ..., r_{m_1})$  be the vector where  $r_i$  is the sum of the elements in row i of matrix A.
- Let  $C = (c_1, c_2, \dots, c_{m_2})$  be the vector where  $c_j$  is the sum of the elements in row j of matrix A.
- Note that  $r_1 + r_2 + \cdots + r_{m_1} = c_1 + c_2 + \cdots + c_{m_2}$  and call this number t.

# Counting binary matrices

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc

code Kotska Numbers

Counting

Conclusio



R. A. Brualdi, Algorithms for constructing (0,1)-matrices with prescribed row and column sum vectors, Discrete Mathematics 306 (23) (2006) 3054–3062.

#### Theorem

The number of binary matrices with R and C as the row sum and the column sum, respectively, is given by

$$\sum_{\lambda \in \mathcal{P}_t} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C}$$

# Counting binary matrices

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code

Kotska Numbers

Countir pattern

Conclusi



R. A. Brualdi, Algorithms for constructing (0,1)-matrices with prescribed row and column sum vectors, Discrete Mathematics 306 (23) (2006) 3054–3062.

#### **Theorem**

The number of binary matrices with R and C as the row sum and the column sum, respectively, is given by

$$\sum_{\lambda \in \mathcal{P}_t} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C}.$$

### Outline

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Prelimina ries SPC produ code Kotska Numbers

Counting patterns

Conclusion

Preliminaries

- SPC product code
- Kotska Numbers
- Counting patterns
- Gonclusions

# Counting patterns

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Prelimina ries

SPC produ code Kotska

Counting patterns

Conclusion

### Purpose

We would like to count the number of uncorrectable erasure patterns of size  $n \times n$  with t erasures,  $4 \le t \le 2n - 1$ .

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC producode Kotska

Counting patterns

Conclusio

Assume we have a codeword of size  $n \times n$  and that 4 erasures have occurred.

The only uncorrectable erasure pattern of 4 erasures is formed by a square

The total number of uncorrectable erasure patterns with 4 erasures is  $\binom{n}{2}$ 

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska

Counting patterns

Conclusio

Assume we have a codeword of size  $n \times n$  and that 4 erasures have occurred.

The only uncorrectable erasure pattern of 4 erasures is formed by a square:

The total number of uncorrectable erasure patterns with 4 erasures is (

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska Numbers

Counting patterns

Conclusion

Assume we have a codeword of size  $n \times n$  and that 4 erasures have occurred.

The only uncorrectable erasure pattern of 4 erasures is formed by a square:

| × | X |  |  |
|---|---|--|--|
| × | X |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |

The total number of uncorrectable erasure patterns with 4 erasures is (

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

ries SPC produc code Kotska Numbers

Counting patterns

Conclusion

Assume we have a codeword of size  $n \times n$  and that 4 erasures have occurred.

The only uncorrectable erasure pattern of 4 erasures is formed by a square:

| X | X |  |
|---|---|--|
|   |   |  |
| × | × |  |
|   |   |  |
|   |   |  |

The total number of uncorrectable erasure patterns with 4 erasures is  $\binom{n}{2}^2$ .

SPC product codes under the BEC

S. D. Cardell, J. J. Climent A. López Martín

Preliminaries SPC produc code Kotska

Counting patterns

Conclusion

Assume we have a codeword of size  $n \times n$  and that 4 erasures have occurred.

The only uncorrectable erasure pattern of 4 erasures is formed by a square:



The total number of uncorrectable erasure patterns with 4 erasures is  $\binom{n}{2}^2$ .

SPC product codes under the BEC

S. D. Cardell, J. J. Climent A. López Martín

Preliminaries SPC produc code Kotska Numbers

Counting patterns

Conclusion

Assume we have a codeword of size  $n \times n$  and that 4 erasures have occurred.

The only uncorrectable erasure pattern of 4 erasures is formed by a square:



The total number of uncorrectable erasure patterns with 4 erasures is  $\binom{n}{2}^2$ .

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

reilmina ries SPC produ code Kotska Numbers

Counting patterns

Conclusion

Assume we have a codeword of size  $n \times n$  and that 5 erasures have occurred.

The only uncorrectable erasure pattern of 5 erasures is formed by a square (uncorrectable pattern of size  $2 \times 2$ ) and one extra erasure:

The total number of uncorrectable erasure patterns with 5 erasures is  $\binom{n}{2}\binom{n^2-4}{2}$ 

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska

Counting patterns

Conclusion

Assume we have a codeword of size  $n \times n$  and that 5 erasures have occurred.

The only uncorrectable erasure pattern of 5 erasures is formed by a square (uncorrectable pattern of size 2  $\times$  2) and one extra erasure:

The total number of uncorrectable erasure patterns with 5 erasures is  $(n)^2/(n^2-4)$ 

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska Numbers

Counting patterns

Conclusion

Assume we have a codeword of size  $n \times n$  and that 5 erasures have occurred.

The only uncorrectable erasure pattern of 5 erasures is formed by a square (uncorrectable pattern of size  $2 \times 2$ ) and one extra erasure:

| × | × |   |  |
|---|---|---|--|
| X | X |   |  |
|   |   | × |  |
|   |   |   |  |
|   |   |   |  |

The total number of uncorrectable erasure patterns with 5 erasures is

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska Numbers

Counting patterns

Conclusion

Assume we have a codeword of size  $n \times n$  and that 5 erasures have occurred.

The only uncorrectable erasure pattern of 5 erasures is formed by a square (uncorrectable pattern of size  $2 \times 2$ ) and one extra erasure:

| × | × |  |  |
|---|---|--|--|
| X | × |  |  |
| X |   |  |  |
|   |   |  |  |
|   |   |  |  |

The total number of uncorrectable erasure patterns with 5 erasures is  $\binom{n}{2} \binom{n^2-4}{n^2-4}$ .

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska Numbers

Counting patterns

Conclusion

Assume we have a codeword of size  $n \times n$  and that 5 erasures have occurred.

The only uncorrectable erasure pattern of 5 erasures is formed by a square (uncorrectable pattern of size  $2 \times 2$ ) and one extra erasure:

| × | X |  | X |
|---|---|--|---|
| × | X |  |   |
|   |   |  |   |
|   |   |  |   |
|   |   |  |   |

The total number of uncorrectable erasure patterns with 5 erasures is  $\binom{n}{2} \binom{n^2-4}{n^2-4}$ .

SPC product codes under the BEC

S. D. Cardell, J. J. Climent A. López Martín

Preliminaries SPC produc code Kotska Numbers

Counting patterns

Conclusion

Assume we have a codeword of size  $n \times n$  and that 5 erasures have occurred.

The only uncorrectable erasure pattern of 5 erasures is formed by a square (uncorrectable pattern of size  $2 \times 2$ ) and one extra erasure:

| × | X |  | × |
|---|---|--|---|
| × | X |  |   |
|   |   |  |   |
|   |   |  |   |
|   |   |  |   |

The total number of uncorrectable erasure patterns with 5 erasures is  $\binom{n}{2}^2 \binom{n^2-4}{1}$ .

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Prelimina ries SPC produ

SPC produc code Kotska

Counting patterns

Conclusion

The total number of uncorrectable erasure patterns with 6 erasures is

$$\binom{n}{2}^2\binom{n^2-4}{2}-4\binom{n}{2}\binom{n}{3}+6\binom{n}{3}^2.$$

# Erasure patterns/ binary matrices

SPC product codes under the BEC

S. D. Cardell, J. J. Climent A. López Martín

Preliminaries SPC produc code Kotska

Counting patterns

Conclusion

Let us represent an erasure pattern of size  $n \times n$  by a binary matrix of size  $n \times n$  where there is 1 in the erasure positions and 0 otherwise.

|   | × | X |
|---|---|---|
| × |   |   |
| × |   |   |
| × |   |   |

$$\begin{pmatrix}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}$$

In this work, our purpose is to count the number of strict uncorrectable erasure patterns of size  $n \times n$  with t erasures. Equivalently, we want to find all matrices of size  $n \times n$  with t ones (and 2 or more ones in each non-zero row and non-zero column).

# Erasure patterns/ binary matrices

SPC product codes under the BEC

S. D. Cardell, J. J. Climent A. López Martín

Preliminaries SPC produc code Kotska

Counting patterns

Conclusio

Let us represent an erasure pattern of size  $n \times n$  by a binary matrix of size  $n \times n$  where there is 1 in the erasure positions and 0 otherwise.

|   | × | X |
|---|---|---|
| × |   |   |
| × |   |   |
| × |   |   |

$$\begin{pmatrix}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}$$

In this work, our purpose is to count the number of strict uncorrectable erasure patterns of size  $n \times n$  with t erasures. Equivalently, we want to find all matrices of size  $n \times n$  with t ones (and 2 or more ones in each non-zero row and non-zero column).

# Uncorrectable strict erasure patterns

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska Numbers

# Counting patterns

Conclusion

#### Notation

- ► The partitions that we will consider will have all length n.
- ▶ If a partition has length r < n, it will be filled in with n r zeros.
- For example, (6,1) is a partition of 7 with length 2, but if we are considering partitions of length 4, we write (6,1,0,0).

# Uncorrectable strict erasure patterns

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC product code Kotska

Counting patterns

Conclusion

### **Notation**

- ▶ The partitions that we will consider will have all length *n*.
- ▶ If a partition has length r < n, it will be filled in with n r zeros.
- ► For example, (6,1) is a partition of 7 with length 2, but if we are considering partitions of length 4, we write (6,1,0,0).

Given two positive integers n and t, the set  $\mathcal{P}_t^n$  is a subset of the set of partitions of t of length n defined as

$$\mathcal{P}_t^n = \{\lambda \in \mathcal{P}_t \mid \lambda_i \neq 1, \lambda_i \leq n, i = 1, 2, \dots, n\}.$$

#### Example

Consider t = 6 and n = 3.

$$\mathcal{P}_6^3 = \{(2,2,2), (3,3,0)\}$$

Given two positive integers n and t, the set  $\mathcal{P}_t^n$  is a subset of the set of partitions of t of length n defined as

$$\mathcal{P}_t^n = \{\lambda \in \mathcal{P}_t \mid \lambda_i \neq 1, \lambda_i \leq n, i = 1, 2, \dots, n\}.$$

### Example

Consider t = 6 and n = 3.

$$\begin{split} \mathcal{P}_6 = \{ (6), (5,1), (4,2), (4,1,1), (3,3), (3,2,1), (3,1,1,1), (2,2,2), \\ (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1) \}. \end{split}$$

 $\mathcal{P}_6^3 = \{(2, 2, 2), (3, 3, 0)\}$ 

Given two positive integers n and t, the set  $\mathcal{P}_t^n$  is a subset of the set of partitions of t of length n defined as

$$\mathcal{P}_t^n = \{\lambda \in \mathcal{P}_t \mid \lambda_i \neq 1, \lambda_i \leq n, i = 1, 2, \dots, n\}.$$

### Example

Consider t = 6 and n = 3.

$$\mathcal{P}_6 = \{(6), (5,1), (4,2), (4,1,1), (3,3), (3,2,1), \underbrace{(3,1,1)}_{1,1,1}, \underbrace{(2,2,2)}_{1,1,1}, \underbrace{(1,1,1,1)}_{1,1,1}\}.$$

 $\mathcal{P}_6^3 = \{(2, 2, 2), (3, 3, 0)\}$ 

Given two positive integers n and t, the set  $\mathcal{P}_t^n$  is a subset of the set of partitions of t of length n defined as

$$\mathcal{P}_t^n = \{\lambda \in \mathcal{P}_t \mid \lambda_i \neq 1, \lambda_i \leq n, i = 1, 2, \dots, n\}.$$

### Example

Consider t = 6 and n = 3.

$$\mathcal{P}_6 = \{(6,0,0), (5,1,0), (4,2,0), (4,1,1), (3,3,0), (3,2,1), \boxed{3,1,1,1}, (2,2,2), \boxed{2,2,1,1}, \boxed{2,1,1,1,1}, \boxed{1,1,1,1,1}\}.$$

 $\mathcal{P}_6^3 = \{(2,2,2), (3,3,0)\}$ 

Given two positive integers n and t, the set  $\mathcal{P}_t^n$  is a subset of the set of partitions of t of length n defined as

$$\mathcal{P}_t^n = \{\lambda \in \mathcal{P}_t \mid \lambda_i \neq 1, \lambda_i \leq n, i = 1, 2, \dots, n\}.$$

### Example

Consider t = 6 and n = 3.

$$\mathcal{P}_6 = \{(6,0,0), \boxed{5,1,0}, (4,2,0), \boxed{4,1,1}, (3,3,0), \boxed{3,2,1}, \boxed{3,1,1}, \\ (2,2,2), \boxed{2,2,1}, \boxed{2,1,1,1}, \boxed{1,1,1,1}\}.$$

$$P_6^3 = \{(2, 2, 2), (3, 3, 0)\}$$

Given two positive integers n and t, the set  $\mathcal{P}_t^n$  is a subset of the set of partitions of t of length n defined as

$$\mathcal{P}_t^n = \{\lambda \in \mathcal{P}_t \mid \lambda_i \neq 1, \lambda_i \leq n, i = 1, 2, \dots, n\}.$$

### Example

Consider t = 6 and n = 3.

$$\mathcal{P}_6 = \{ \underbrace{(6,0,0)}_{[5,1]},\underbrace{(5,1,1)}_{[4,2]},\underbrace{(4,2,0)}_{[4,1]},\underbrace{(4,3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,1,1]},\underbrace{(3,3,0)}_{[1,1,1]},\underbrace{(3,3,0)}_{[1,1,1]},\underbrace{(3,3,0)}_{[2,1,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]},\underbrace{(3,3,0)}_{[2,2,1]}$$

 $P_6^3 = \{(2, 2, 2), (3, 3, 0)\}$ 

Given two positive integers n and t, the set  $\mathcal{P}_t^n$  is a subset of the set of partitions of t of length n defined as

$$\mathcal{P}_t^n = \{\lambda \in \mathcal{P}_t \mid \lambda_i \neq 1, \lambda_i \leq n, i = 1, 2, \dots, n\}.$$

### Example

Consider t = 6 and n = 3.

### Lemma

For a partition  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$  of a positive integer t and length n, the number of possible combinations of the elements in  $\lambda$  is given by

$$\delta_{\lambda} = \frac{n!}{\eta_1! \eta_2! \cdots \eta_n!},$$

where  $\eta_i = |\{j \mid \lambda_j = i\}|$ , for i = 1, 2, ..., n.

#### Example

$$\lambda = (3, 1, 1, 0) \in \mathcal{P}_5^4$$

$$\delta_{\lambda} = \frac{4!}{1!2!1!} = 12$$

#### Lemma

For a partition  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$  of a positive integer t and length n, the number of possible combinations of the elements in  $\lambda$  is given by

$$\delta_{\lambda} = \frac{n!}{\eta_1! \eta_2! \cdots \eta_n!},$$

where  $\eta_i = |\{j \mid \lambda_j = i\}|$ , for i = 1, 2, ..., n.

### Example

$$\lambda=(3,1,1,0)\in\mathcal{P}_5^4$$

$$\delta_{\lambda} = \frac{4!}{1!2!1!} = 12.$$

### Main result

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Prelimina ries

code

Kotska Numbers

Counting patterns

Conclusi

### Theorem

The number of strict uncorrectable erasure patterns of size  $n \times n$  with t erasures is given by

$$\sum_{R,C \in \mathcal{P}_t^n} \delta_R \delta_C \sum_{\lambda \in \mathcal{P}_t} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C}. \tag{1}$$

### Example

Consider n = 3 and t = 4.

$$\mathcal{P}_4 = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$$

$$P_4^3 = \{(2,2,0)\} \longrightarrow C = R = (2,2,0)$$

$$\delta_R = \delta_C = \frac{3!}{2!1!} = 3$$

$$\sum_{A,C \in \mathcal{P}_4^3} \delta_R \delta_C \sum_{\lambda \in \mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9 \sum_{\lambda \in \mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C}$$

### Example

Consider n = 3 and t = 4.

$$\mathcal{P}_4 = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$$

$$\mathcal{P}_4^3 = \{(2,2,0)\} \longrightarrow C = R = (2,2,0)$$

$$\delta_R = \delta_C = \frac{3!}{2!1!} = 3$$

$$\sum_{R,C \in \mathcal{P}_4^3} \delta_R \delta_C \sum_{\lambda \in \mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9 \sum_{\lambda \in \mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C}$$

## Example

$$\mathcal{P}_4 = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$$

$$\mathcal{P}_4^3=\{(2,2,0)\}\longrightarrow C=R=(2,2,0)$$

$$\delta_R = \delta_C = \frac{3!}{2!1!} = 3$$

$$\sum_{A,C \in \mathcal{P}_4^3} \delta_R \delta_C \sum_{\lambda \in \mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9 \sum_{\lambda \in \mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C}$$

## Example

$$\mathcal{P}_4 = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$$

$$\mathcal{P}_4^3=\{(2,2,0)\}\longrightarrow C=R=(2,2,0)$$

$$\delta_R = \delta_C = \frac{3!}{2!1!} = 3$$

$$\sum_{R,C\in\mathcal{P}_4^3} \delta_R \delta_C \sum_{\lambda\in\mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9 \sum_{\lambda\in\mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C}$$

# Main result

SPC product codes under the BEC

Cardell, J. J. Climent, A. López Martín

Preliminaries
SPC produc

code Kotska Numbers

Counting patterns

Conclusion

# Example

| λ          | $\kappa_{\lambda,R}$ | $\lambda^*$ | $\kappa_{\lambda^*,\mathcal{C}}$ | $\kappa_{\lambda,R} \cdot \kappa_{\lambda^*,C}$ |
|------------|----------------------|-------------|----------------------------------|-------------------------------------------------|
| 4          | 1                    | 1, 1, 1, 1  | 0                                | 0                                               |
| 3, 1       | 1                    | 2, 1, 1     | 0                                | 0                                               |
| 2,2        | 1                    | 2,2         | 1                                | 1                                               |
| 2, 1, 1    | 0                    | 3, 1        | 1                                | 0                                               |
| 1, 1, 1, 1 | 0                    | 4           | 1                                | 0                                               |
|            |                      |             |                                  | 1                                               |

# Example

$$\sum_{R,C\in\mathcal{P}_{4}^{3}}\delta_{R}\delta_{C}\sum_{\lambda\in\mathcal{P}_{4}}\kappa_{\lambda,R}\;\kappa_{\lambda^{*},C}=9\sum_{\lambda\in\mathcal{P}_{4}}\kappa_{\lambda,R}\;\kappa_{\lambda^{*},C}=9$$

## Example

$$\sum_{R,C\in\mathcal{P}_{4}^{3}}\delta_{R}\delta_{C}\sum_{\lambda\in\mathcal{P}_{4}}\kappa_{\lambda,R}\;\kappa_{\lambda^{*},C}=9\sum_{\lambda\in\mathcal{P}_{4}}\kappa_{\lambda,R}\;\kappa_{\lambda^{*},C}=9$$

| × | × |  |
|---|---|--|
| X | X |  |
|   |   |  |

# Example

$$\sum_{R,C\in\mathcal{P}_4^3} \delta_R \delta_C \sum_{\lambda\in\mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9 \sum_{\lambda\in\mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9$$

| × | × |
|---|---|
| X | × |
|   |   |

# Example

$$\sum_{R,C\in\mathcal{P}_4^3} \delta_R \delta_C \sum_{\lambda\in\mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9 \sum_{\lambda\in\mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9$$

# Example

$$\sum_{R,C\in\mathcal{P}_{4}^{3}}\delta_{R}\delta_{C}\sum_{\lambda\in\mathcal{P}_{4}}\kappa_{\lambda,R}\;\kappa_{\lambda^{*},C}=9\sum_{\lambda\in\mathcal{P}_{4}}\kappa_{\lambda,R}\;\kappa_{\lambda^{*},C}=9$$

| × | × |  |
|---|---|--|
|   |   |  |
| × | × |  |

# Example

$$\sum_{R,C\in\mathcal{P}_4^3} \delta_R \delta_C \sum_{\lambda\in\mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9 \sum_{\lambda\in\mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9$$

| × | × |
|---|---|
|   |   |
| × | × |

# Example

$$\sum_{R,C\in\mathcal{P}_{4}^{3}}\delta_{R}\delta_{C}\sum_{\lambda\in\mathcal{P}_{4}}\kappa_{\lambda,R}\;\kappa_{\lambda^{*},C}=9\sum_{\lambda\in\mathcal{P}_{4}}\kappa_{\lambda,R}\;\kappa_{\lambda^{*},C}=9$$

| × | × |
|---|---|
|   |   |
| × | × |

Preliminaries SPC produc code

Counting patterns

Conclusion

## Example

$$\sum_{R,C\in\mathcal{P}_4^3} \delta_R \delta_C \sum_{\lambda\in\mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9 \sum_{\lambda\in\mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9$$



# Example

$$\sum_{R,C\in\mathcal{P}_{4}^{3}}\delta_{R}\delta_{C}\sum_{\lambda\in\mathcal{P}_{4}}\kappa_{\lambda,R}\;\kappa_{\lambda^{*},C}=9\sum_{\lambda\in\mathcal{P}_{4}}\kappa_{\lambda,R}\;\kappa_{\lambda^{*},C}=9$$



Preliminaries SPC produc code

Counting patterns

Conclusion

## Example

$$\sum_{R,C\in\mathcal{P}_4^3} \delta_R \delta_C \sum_{\lambda\in\mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9 \sum_{\lambda\in\mathcal{P}_4} \kappa_{\lambda,R} \; \kappa_{\lambda^*,C} = 9$$



# Outline

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Prelimina ries SPC produ code Kotska Numbers

Counting patterns

Conclusions

Preliminaries

- SPC product code
- Kotska Numbers
- Counting patterns
- 3 Conclusions

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Prelimina Fies SPC producode Kotska Numbers

Counting patterns

Conclusions

#### So far...

- ▶ We know the number of uncorrectable erasure patterns of size  $n \times n$  with t erasures when t = 4, 5, 6, 7, 8.
- ▶ Using Kotska numbers and Young tableaux, we can compute the number of strict uncorrectable erasure patterns of size  $n \times n$ .

- ▶ An erasure pattern of size  $n \times n$  can be represented by a bipartite graph with 2n vertices (n in each vertex class).
- ▶ For  $9 \le t \le 2n 1$ , the number of uncorrectable patterns can be computed taking partitions of 2n and considering connected components of the corresponding graph in each case.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Prelimina ries SPC produ code Kotska Numbers

Counting patterns

Conclusions

## So far...

- We know the number of uncorrectable erasure patterns of size  $n \times n$  with t erasures when t = 4, 5, 6, 7, 8.
- ▶ Using Kotska numbers and Young tableaux, we can compute the number of strict uncorrectable erasure patterns of size  $n \times n$ .

- ▶ An erasure pattern of size  $n \times n$  can be represented by a bipartite graph with 2n vertices (n in each vertex class).
- For  $9 \le t \le 2n 1$ , the number of uncorrectable patterns can be computed taking partitions of 2n and considering connected components of the corresponding graph in each case.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska

Counting patterns

Conclusions

## So far...

- ▶ We know the number of uncorrectable erasure patterns of size  $n \times n$  with t erasures when t = 4, 5, 6, 7, 8.
- ▶ Using Kotska numbers and Young tableaux, we can compute the number of strict uncorrectable erasure patterns of size  $n \times n$ .

- An erasure pattern of size  $n \times n$  can be represented by a bipartite graph with 2n vertices (n in each vertex class).
- For  $9 \le t \le 2n 1$ , the number of uncorrectable patterns can be computed taking partitions of 2n and considering connected components of the corresponding graph in each case.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín

Preliminaries SPC produc code Kotska Numbers

Counting patterns

Conclusions

## So far...

- ▶ We know the number of uncorrectable erasure patterns of size  $n \times n$  with t erasures when t = 4, 5, 6, 7, 8.
- ▶ Using Kotska numbers and Young tableaux, we can compute the number of strict uncorrectable erasure patterns of size  $n \times n$ .

- An erasure pattern of size  $n \times n$  can be represented by a bipartite graph with 2n vertices (n in each vertex class).
- For  $9 \le t \le 2n 1$ , the number of uncorrectable patterns can be computed taking partitions of 2n and considering connected components of the corresponding graph in each case.

SPC product codes under the BEC

S. D. Cardell, J. J. Climent A. López Martín

Preliminaries SPC produc code Kotska Numbers

Counting patterns

Conclusions

## So far...

- ▶ We know the number of uncorrectable erasure patterns of size  $n \times n$  with t erasures when t = 4, 5, 6, 7, 8.
- ▶ Using Kotska numbers and Young tableaux, we can compute the number of strict uncorrectable erasure patterns of size  $n \times n$ .

- ▶ An erasure pattern of size  $n \times n$  can be represented by a bipartite graph with 2n vertices (n in each vertex class).
- ▶ For  $9 \le t \le 2n 1$ , the number of uncorrectable patterns can be computed taking partitions of 2n and considering connected components of the corresponding graph in each case.

#### SPC product codes under the BEC

S. D. Cardell, J. J. Climent A. López Martín



SPC product codes under the BEC

Cardell, J. J. Climent A. López Martín

# Performance of SPC product codes under the erasure channel

Sara D. Cardell<sup>1</sup> Joan-Josep Climent<sup>1</sup> Alberto López Martín<sup>2</sup>

<sup>1</sup> Universitat d'Alacant, Spain
<sup>2</sup> Instituto Nacional de Matemática Pura e Aplicada, Brazil

ALCOMA 2015



## References

SPC product codes under the BEC

S. D. Cardell, J. J. Climent, A. López Martín



P. Elias, Coding for noisy channels, in: IRE International Convention Record, pt. 4, 1955, pp. 37-46.



M. A. Kousa, A novel approach for evaluating the performance of SPC product codes under erasure decoding 50 (1) (2002) 7–11.



M. A. Kousa, A. H. Mugaibel, Cell loss recovery using two-dimensional erasure correction for ATM networks, in: Proceedings of the Seventh International Conference on Telecommunication Systems, 1999, pp. 85–89.



J. M. Simmons, R. G. Gallager, Design of error detection scheme for class C service in ATM, IEEE/ACM Transactions on Networking 2 (1) (1994) 80–88.



D. M. Rankin, T. A. Gulliver, Single parity check product codes 49 (8) (2001) 1354-1362.



R. A. Brualdi, Algorithms for constructing (0,1)-matrices with prescribed row and column sum vectors, Discrete Mathematics 306 (23) (2006) 3054–3062.



D. E. Knuth, Permutations, matrices, and generalized young tableaux, Pacific Journal of Mathematics 34 (3) (1970) 707–727.

