Complete (k, 3)-arcs from quartic curves

Daniele Bartoli

(joint work with Massimo Giulietti and Giovanni Zini)

University of Gent (Belgium)

ALCOMA 2015

Kloster Banz, March 15 - 20, 2015

Outline

• (n, r)-arcs and Coding Theory

 Algebraic constructions of small complete (n, 3)-arcs

Possible developments

Complete arcs

Definition (Arc)

$$\mathcal{A} \subset AG(r,q), PG(r,q) \iff n \text{ points}$$
 $n-arc \iff no r+1 \text{ of which}$
 $are in a hyperplane$

Complete (n, m)-arcs in projective planes

MDS codes

Linear code $\mathcal{C} < \mathbb{F}_q^N$

d Hamming distance

Singleton Bound

$$[n, k, d]_q \Longrightarrow d \leq n - k + 1$$

Definition (MDS Codes)

 $d = n - k + 1 \Longrightarrow Maximum Distance Separable (MDS)$

MDS
$$[n, k, d]_q$$
-code \longleftrightarrow $in PG(n - k - 1, q)$

Columns of a parity-check matrix

 \longleftrightarrow points in PG(n-k-1,q)

NMDS codes

Definition (Singleton defect)

$$\Delta(\mathcal{C}) = n - k + 1 - d$$

$$\Delta(\mathcal{C}) = 0 \implies \mathcal{C} \quad \mathsf{MDS}$$

$$\Delta({\cal C})=1 \qquad \Longrightarrow \quad {\cal C} \quad \ {\sf A}({\sf Imost}){\sf MDS}$$

$$egin{array}{lll} \Delta(\mathcal{C}) &= 1 \ \Delta(\mathcal{C}^\perp) &= 1 \end{array} & \Longrightarrow & \mathcal{C} & \mathsf{N}(\mathsf{ear})\mathsf{MDS} \end{array}$$

NMDS
$$[n, 3, d]_q$$
-code \longleftrightarrow $(n, 3)$ -arc in $PG(2, q)$

Columns of a parity-check matrix

 \longleftrightarrow points in PG(2,q)

Algebraic constructions

Idea of Segre and Lombardo-Radice

The points of the arc are chosen, with few exceptions, among the points of a conic or a cubic curve

- ① Choose a $\mathcal{K} \subset \mathrm{PG}(2,q)$ having a low degree parametrization
- 2 Prove that \mathcal{K} is an arc
- ③ \forall $P \in PG(2, q) \setminus \mathcal{K}$ construct \mathcal{H}_P algebraic curve which expresses the collinearity condition between P and $P_1, P_2 \in \mathcal{K}$
- **4** Show that \mathcal{H}_P is absolutely irreducible for almost all P
- Use the Hasse-Weil theorem to show that, if q is large enough, then $(\overline{x}, \overline{y}) \in \mathcal{H}_P(\mathbb{F}_q)$: $P_1(\overline{x})$ and $P_2(\overline{y})$ collinear with P
- \odot Extend \mathcal{K} with some extra points

$$\mathcal{K} = \{(f(t), g(t)) \mid t \in \mathbb{F}_q\} \subset AG(2, q)$$

$$\mathcal{K} = \{(f(t), g(t)) \mid t \in \mathbb{F}_q\} \subset AG(2, q)$$

 \bullet \mathcal{K} is an arc if

$$\det \begin{pmatrix} f(x) & g(x) & 1 \\ f(y) & g(y) & 1 \\ f(z) & g(z) & 1 \end{pmatrix} \neq 0$$

$$\mathcal{K} = \{(f(t), g(t)) \mid t \in \mathbb{F}_q\} \subset AG(2, q)$$

 \bullet \mathcal{K} is an arc if

$$\det \begin{pmatrix} f(x) & g(x) & 1 \\ f(y) & g(y) & 1 \\ f(z) & g(z) & 1 \end{pmatrix} \neq 0$$

ullet P=(a,b) covered by $\mathcal K$ if there exist $x,y\in\mathbb F_q$ with

$$\det \begin{pmatrix} a & b & 1 \\ f(x) & g(x) & 1 \\ f(y) & g(y) & 1 \end{pmatrix} = 0$$

$$\mathcal{K} = \{(f(t), g(t)) \mid t \in \mathbb{F}_q\} \subset AG(2, q)$$

 \bullet \mathcal{K} is an arc if

$$\det egin{pmatrix} f(x) & g(x) & 1 \ f(y) & g(y) & 1 \ f(z) & g(z) & 1 \ \end{pmatrix}
eq 0$$

ullet P=(a,b) covered by $\mathcal K$ if there exist $x,y\in\mathbb F_q$ with

$$\mathcal{H}_P$$
: det $\begin{pmatrix} a & b & 1 \\ f(x) & g(x) & 1 \\ f(y) & g(y) & 1 \end{pmatrix} = 0$

$$\mathcal{K} = \{(f(t), g(t)) \mid t \in \mathbb{F}_q\} \subset AG(2, q)$$

 \bullet \mathcal{K} is an arc if

$$\det egin{pmatrix} f(x) & g(x) & 1 \ f(y) & g(y) & 1 \ f(z) & g(z) & 1 \ \end{pmatrix}
eq 0$$

ullet P=(a,b) covered by $\mathcal K$ if there exist $x,y\in\mathbb F_q$ with

$$\mathcal{H}_P$$
: det $\begin{pmatrix} a & b & 1 \\ f(x) & g(x) & 1 \\ f(y) & g(y) & 1 \end{pmatrix} = 0$

- the algebraic curve \mathcal{H}_P has an \mathbb{F}_q -rational point $(\overline{x}, \overline{y})$
- $(f(\overline{x}), g(\overline{x})) \neq (f(\overline{y}), g(\overline{y}))$, not a pole of x or y

$$\mathcal{K} = \{ \underbrace{(L(t) + c, (L(t) + c)^3)}_{P_t} \mid t \in \mathbb{F}_q \}, \qquad -3c \notin \operatorname{Im}(L)$$

$$\mathcal{H}_{P}: b + (L(x) + c)(L(y) + c)^{2} + (L(x) + c)^{2}(L(y) + c) - a((L(x) + c)^{2} + (L(x) + c)(L(y) + t) + (L(y) + c)^{2}) = 0$$

$$\mathcal{K} = \{\underbrace{(L(t) + c, (L(t) + c)^3)}_{P_t} \mid t \in \mathbb{F}_q\}, \qquad -3c \notin \text{Im}(L)$$

$$\mathcal{H}_{P}: b + (L(x) + c)(L(y) + c)^{2} + (L(x) + c)^{2}(L(y) + c) - a((L(x) + c)^{2} + (L(x) + c)(L(y) + t) + (L(y) + c)^{2}) = 0$$

(Szőnyi, 1985)

if
$$b \neq a^3$$

- \bullet \mathcal{H}_P is absolutely irreducible
- \mathcal{H}_P has at least $q+1-9\deg(L)^2\sqrt{q}$ points

Algebraic constructions

Idea of Segre and Lombardo-Radice

The points of the arc are chosen, with few exceptions, among the points of a conic or a cubic curve

- \bigcirc q/2: Segre, Hirschfeld
- \bigcirc q/4: Korchmàros
- 2q^{9/10}: Szőnyi
- © cq^{3/4}: Szőnyi-Voloch-Anbar-B.-Giulietti-Platoni

Infinite families of complete (n, r)-arcs, r > 2

• \mathbb{F}_q -rational points of irreducible curve of degree r

• 2-character sets in PG(2, q)

$$r = 3$$

No other examples than irreducible cubics!

Complete (n, 3)-arcs from cubic curves

Proposition (Hirschfeld-Voloch)

- E: plane elliptic curve
- $j(\mathcal{E}) \neq 0$
- $q \ge 121$

 \mathcal{E} is a complete (n,3)-arc in PG(2,q)

Proposition (Giulietti)

- E: plane elliptic curve
- |E| even
- $j(\mathcal{E}) = 0$
- $q = p^r$, p > 3, q > 9887
- r even or $p \equiv 1 \mod 3$

 \mathcal{E} is a complete (n,3)-arc in PG(2,q)

 \mathcal{E} complete (n,3)-arc $\Longrightarrow q-2\sqrt{q}+1 \leq |\mathcal{E}| \leq q+2\sqrt{q}+1$

Complete (n, 3)-arcs

UPPER and LOWER BOUNDS

A: complete (n,3)-arc

$$\sqrt{6(q+1)} \le |\mathcal{A}| \le 2q+1$$

Random construction

$$q \le 30000$$

$$|\mathcal{A}| \simeq \sqrt{6q} \log q$$

Algebraic constructions of small complete (n, 3)-arcs

Idea of Segre and Lombardo-Radice

The points of the arc are chosen, with few exceptions, among the points of a conic or a cubic curve

Our Idea

The points of the (n,3)-arc are chosen, with few exceptions, among the points of an irreducible quartic curve

Small complete (n,3)-arcs from quartic curves

- p: odd prime, $p \equiv 2 \mod 3$
- $\sigma = p^{h'}$, h' odd
- $q = p^h$, h > h', $h' \mid h$

Proposition

$$C = (w, w^4)$$
 $B = (v, v^4)$
 $D = (t, t^4)$

COLLINEAR
$$\iff$$

$$\begin{cases} u^2 + v^2 + w^2 + uv + uw + vw = 0 \\ u + v + w + t = 0 \end{cases}$$

- $M := \{(a^{\sigma} a) \mid a \in \mathbb{F}_q\}$ $M \simeq \mathbb{F}_{\frac{q}{\sigma}} \leq (\mathbb{F}_q, +)$
- $\mathcal{K}_t := \{(v, v^4) \mid v \in M + t\}$, with $t \notin M$

- $\bullet \ \ \mathsf{M} := \{(\mathsf{a}^\sigma \mathsf{a}) \mid \mathsf{a} \in \mathbb{F}_q\} \qquad \ \ \mathsf{M} \simeq \mathbb{F}_{\frac{q}{\sigma}} \leq (\mathbb{F}_q, +)$
- $\mathcal{K}_t := \{(v, v^4) \mid v \in M + t\}$, with $t \notin M$

Proposition

 \mathcal{K}_t is a (k,3)-arc.

Points off Q

Proposition

$$A = (x^{\sigma} - x + t, (x^{\sigma} - x + t)^{4})$$

$$B = (y^{\sigma} - y + t, (y^{\sigma} - y + t)^{4})$$

$$C = (z^{\sigma} - z + t, (z^{\sigma} - z + t)^{4})$$

$$AG(2, q) \setminus \mathcal{Q}$$

COLLINEAR

$$\begin{cases} (z^{\sigma} - z)^{2} + (z^{\sigma} - z)((x^{\sigma} - x) + (y^{\sigma} - y) + 4t) + 4t(x^{\sigma} - x + y^{\sigma} - y) + \\ +6t^{2} + (x^{\sigma} - x)(y^{\sigma} - y) + (x^{\sigma} - x)^{2} + (y^{\sigma} - y)^{2} = 0 \end{cases}$$

$$\begin{cases} \mathbf{a}((x^{\sigma} - x)^{2} + (y^{\sigma} - y)^{2} + 2t^{2} + 2t(x^{\sigma} - x) + \\ +2t(y^{\sigma} - y))(x^{\sigma} - x + y^{\sigma} - y + 2t) - (x^{\sigma} - x + t)(y^{\sigma} - y + t) + \\ \cdot ((x^{\sigma} - x)^{2} + (y^{\sigma} - y)^{2} + (x^{\sigma} - x)(y^{\sigma} - y) + 3t^{2} + 3t(x^{\sigma} - x + y^{\sigma} - y)) - \mathbf{b} = 0 \end{cases}$$

$$\begin{cases} (z^{\sigma} - z)^{2} + (z^{\sigma} - z)((x^{\sigma} - x) + (y^{\sigma} - y) + 4t) + 4t(x^{\sigma} - x + y^{\sigma} - y) + \\ +6t^{2} + (x^{\sigma} - x)(y^{\sigma} - y) + (x^{\sigma} - x)^{2} + (y^{\sigma} - y)^{2} = 0 \end{cases}$$

$$a((x^{\sigma} - x)^{2} + (y^{\sigma} - y)^{2} + 2t^{2} + 2t(x^{\sigma} - x) + \\ +2t(y^{\sigma} - y))(x^{\sigma} - x + y^{\sigma} - y + 2t) - (x^{\sigma} - x + t)(y^{\sigma} - y + t) + \\ \cdot ((x^{\sigma} - x)^{2} + (y^{\sigma} - y)^{2} + (x^{\sigma} - x)(y^{\sigma} - y) + 3t^{2} + 3t(x^{\sigma} - x + y^{\sigma} - y)) - b = 0 \end{cases}$$

for almost all $P \in AG(2, q) \setminus Q$ the space curve \mathcal{H}_P is absolutely irreducible and it has genus $g \leq 30\sigma^3 - 12\sigma^2 - 4\sigma + 1$

$$\mathcal{H}_{P}$$

$$\begin{cases} (z^{\sigma} - z)^{2} + (z^{\sigma} - z)((x^{\sigma} - x) + (y^{\sigma} - y) + 4t) + 4t(x^{\sigma} - x + y^{\sigma} - y) + \\ +6t^{2} + (x^{\sigma} - x)(y^{\sigma} - y) + (x^{\sigma} - x)^{2} + (y^{\sigma} - y)^{2} = 0 \end{cases}$$

$$\begin{cases} a((x^{\sigma} - x)^{2} + (y^{\sigma} - y)^{2} + 2t^{2} + 2t(x^{\sigma} - x) + \\ +2t(y^{\sigma} - y))(x^{\sigma} - x + y^{\sigma} - y + 2t) - (x^{\sigma} - x + t)(y^{\sigma} - y + t) + \\ \cdot ((x^{\sigma} - x)^{2} + (y^{\sigma} - y)^{2} + (x^{\sigma} - x)(y^{\sigma} - y) + 3t^{2} + 3t(x^{\sigma} - x + y^{\sigma} - y)) - b = 0 \end{cases}$$

for almost all $P \in AG(2, q) \setminus \mathcal{Q}$ the space curve \mathcal{H}_P is absolutely irreducible and it has genus $g \leq 30\sigma^3 - 12\sigma^2 - 4\sigma + 1$

Theorem

 $q \ge 3600 \, \sigma^6$

 \mathcal{K}_t is a 3-arc covering $\mathrm{AG}(2,q)\setminus\mathcal{Q}$ (except possibly Y=0)

Points of Q

Problem

To find $T \subset Q$

- *T* is a 3-arc
- T contains at least one coset K_t
- T covers all the points of $Q \setminus T$

Points of Q

Problem

To find $T \subset Q$

- T is a 3-arc
- T contains at least one coset K_t
- T covers all the points of $Q \setminus T$

In particular

- 4 points of *T* are not collinear
- every point in $Q \setminus T$ is collinear with 3 points of T

Points of Q

Problem

To find $T \subset Q$

- T is a 3-arc
- T contains at least one coset K_t
- T covers all the points of $Q \setminus T$

In particular

- 4 points of *T* are not collinear
- every point in $Q \setminus T$ is collinear with 3 points of T

Solution

Use 4-independent subsets!

Definition

$$G$$
: abelian group, $A \subset G$

- $A \subset \mathcal{G}$ \iff $x_1 + x_2 + \cdots + x_k \neq 0$ $\forall x_i \in A$
- $g \in \mathcal{G} \setminus A$ \iff $x_1 + x_2 + \dots + x_{k-1} + g = 0$ $for some x_i \in A$

Proposition

G abelian, not elementary 3-abelian

 $T \subset G$ maximal 3-independent subset

$$|c_1\sqrt{|G|}\leq |T|\leq \frac{|G|}{2}$$

• (Voloch)
$$p \equiv 2 \mod 3 \Longrightarrow T = \left\{ \pm 1, \pm 3, \dots, \pm \frac{p-2}{3} \right\} \subset \mathbb{Z}_p$$

• (Voloch)
$$p \equiv 1 \mod 3 \Longrightarrow T = \left\{-1, 1, 3, 4, \dots, \frac{p-1}{3}\right\} \subset \mathbb{Z}_p$$

• (Szőnyi) $G = A \times B$, A, B not elementary 3-abelian

$$T_1 = \{(a, x) | x \in B, x \neq -2b\}$$

 $T_2 = \{(y, b) | y \in A, y \neq -2a\}$

- $M := \{(a^{\sigma} a) \mid a \in \mathbb{F}_q\}$
- $\mathcal{K}_t := \{(v, v^4) \mid v \in M + t\}$, with $t \notin M$

4-independent subset in $\mathbb{F}_q/M \equiv \mathbb{F}_{\sigma}$

- $\bullet \ \ M := \{(a^{\sigma} a) \mid a \in \mathbb{F}_q \}$
- $\mathcal{K}_t := \{(v, v^4) \mid v \in M + t\}$, with $t \notin M$

4-independent subset in $\mathbb{F}_q/M \equiv \mathbb{F}_\sigma$

Proposition

 \mathcal{T} : 4-independent subset of \mathbb{F}_q/M

$$\mathcal{K}_{\mathcal{T}} = \bigcup_{M+t \in \mathcal{T}} \mathcal{K}_t$$

 $\mathcal{K}_{\mathcal{T}}$ is a (k,3)-arc

- $M := \{(a^{\sigma} a) \mid a \in \mathbb{F}_q\}$
- $\mathcal{K}_t := \{(v, v^4) \mid v \in M + t\}$, with $t \notin M$

4-independent subset in $\mathbb{F}_q/M \equiv \mathbb{F}_\sigma$

Proposition

 \mathcal{T} : 4-independent subset of \mathbb{F}_q/M

$$\mathcal{K}_{\mathcal{T}} = \bigcup_{M+t \in \mathcal{T}} \mathcal{K}_{t}$$

 $\mathcal{K}_{\mathcal{T}}$ is a (k,3)-arc

$$\sigma = p^{h'}$$
$$h' \text{ odd}$$

$$\Longrightarrow$$

$$\sigma = p, \ \sigma = p^3, \ldots$$

Theorem

- \mathcal{T} : 4-independent subset of \mathbb{F}_q/M
- \bullet $|\mathcal{T}| = n$
- $|\mathbb{F}_q/M \setminus Cov(\mathcal{T})| \leq m$
- $\mathcal{K}_{\mathcal{T}} = \bigcup_{M+t \in \mathcal{T}} \mathcal{K}_t$
- $q \ge 3600 \, \sigma^6$
- $\exists \mathcal{K} complete 3-arc$

$$\mathcal{K}_{\mathcal{T}} \subset \mathcal{K} \subset \mathcal{Q}$$

$$|\mathcal{K}| \leq (n+m)\frac{q}{\sigma} + 6$$

$$|\mathcal{K}| \leq (n+m)\frac{q}{\sigma} + 6$$

$$\sigma = p$$
 $p \equiv 1 \mod 4$
 $p \ge 29$

$$\begin{array}{c|c}
\sigma = p \\
p \equiv 1 \mod 4 \\
p \ge 29
\end{array} \Longrightarrow \begin{array}{c}
n = \frac{p-5}{4} \\
m = 1
\end{array} \Longrightarrow \begin{array}{c}
|\mathcal{K}| \lesssim \frac{q}{4}$$

$$\begin{array}{c|c}
\bullet & \boxed{\sigma \geq p^3} \implies \left| \begin{array}{c}
n = 2\sqrt{\frac{\sigma}{p}} + p - 4 \\
m = 2(\sqrt{\sigma p} - \sqrt{\frac{\sigma}{p}})
\end{array} \right| \implies \left| \mathcal{K} \right| \lesssim 2\sqrt{\frac{p}{\sigma}} q$$

$$|\mathcal{K}| \leq (n+m)\frac{q}{\sigma} + 6$$

$$\begin{array}{c|c}
\sigma = p \\
p \equiv 1 \mod 4 \\
p \geq 29
\end{array}$$

$$\begin{array}{c|c}
\sigma = p \\
p \equiv 1 \mod 4 \\
p \ge 29
\end{array} \Longrightarrow \begin{array}{c}
n = \frac{p-5}{4} \\
m = 1
\end{array} \Longrightarrow \begin{array}{c}
|\mathcal{K}| \lesssim \frac{q}{4}$$

$$\begin{array}{c|c}
\sigma = p \\
p \equiv 3 \mod 4 \\
p > 29
\end{array} \Longrightarrow \begin{array}{c}
n = \frac{p-7}{4} \\
m = 3
\end{array} \Longrightarrow \begin{array}{c}
|\mathcal{K}| \lesssim \frac{q}{4}
\end{array}$$

•
$$\sigma \ge p^3$$
 \Longrightarrow $\left| \begin{array}{l} n = 2\sqrt{\frac{\sigma}{p}} + p - 4 \\ m = 2(\sqrt{\sigma p} - \sqrt{\frac{\sigma}{p}}) \end{array} \right| \Longrightarrow |\mathcal{K}| \lesssim 2\sqrt{\frac{p}{\sigma}}q$

$$\sigma = p^3$$
 $p > 13$
 $\Rightarrow |\mathcal{K}| \simeq q^{20/21}$
 $q = \sigma^7$

Idea of Segre and Lombardo-Radice

The points of the arc are chosen, with few exceptions, among the points of a conic or a cubic curve

Our Idea

The points of the (n,3)-arc are chosen, with few exceptions, among the points of an irreducible quartic curve

Idea of Segre and Lombardo-Radice

The points of the arc are chosen, with few exceptions, among the points of a conic or a cubic curve

Our Idea

The points of the (n,3)-arc are chosen, with few exceptions, among the points of an irreducible quartic curve

(n, r)-arcs?

NATURAL IDEA:

The points of the (n, r)-arc are chosen, with few exceptions, among the points of an irreducible curve of degree r + 1 $(Y = X^{r+1})$

NATURAL IDEA:

The points of the (n, r)-arc are chosen, with few exceptions, among the points of an irreducible curve of degree r + 1 $(Y = X^{r+1})$

PROBLEM:

The curve \mathcal{H}_P is more complicated

NATURAL IDEA:

The points of the (n, r)-arc are chosen, with few exceptions, among the points of an irreducible curve of degree r + 1 $(Y = X^{r+1})$

PROBLEM:

The curve \mathcal{H}_{P} is more complicated

r = 4: Collinearity condition between

$$P = (a, b), P_1 = (u, u^5) P_2 = (v, v^5), P_3 = (w, w^5), P_4 = (s, s^5)$$

$$\begin{cases} b + uv(u^3 + u^2v + uv^2 + v^3) - a(u^4 + u^3v + u^2v^2 + uv^3 + v^4) = 0 \\ w^3 + w^2(u + v) + w(u^2 + uv + v^2) + (u^3 + u^2v + uv^2 + v^3) = 0 \\ s^2 + s(u + v + w) + u^2 + v^2 + w^2 + uv + uw + vw = 0 \end{cases}$$

THANK YOU FOR YOUR ATTENTION!